www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Polynom und Linearfaktoren
Polynom und Linearfaktoren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynom und Linearfaktoren: Gleichheit
Status: (Frage) beantwortet Status 
Datum: 18:56 Di 15.05.2007
Autor: LittleStudi

Aufgabe
Es seine P [mm] \in [/mm] K[X] ein Polynom, P [mm] \not= [/mm] 0 und [mm] \lambda_{1},..., \lambda_{k} [/mm] die verschiedenen Nullstellen von P.
Zeigen Sie dass dann gilt:
[mm] \mu(P,\lambda_{1})+ [/mm] ... + [mm] \mu(P,\lambda_{k}) \le [/mm] grad(P)
Gleichheit gilt genau dann, wenn P in Linearfaktoren zerfällt.

Unser Proffessor meinte dass man dies ohne großen Aufwand zeigen könnte ... aber nun weiß ich nicht wie.
Selbst beim Gleichgheitsfall hab ich noch keine Beweisidee :(

Wisst ihr vielleicht mehr???

        
Bezug
Polynom und Linearfaktoren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:30 Di 15.05.2007
Autor: felixf

Hallo!

> Es seine P [mm]\in[/mm] K[X] ein Polynom, P [mm]\not=[/mm] 0 und
> [mm]\lambda_{1},..., \lambda_{k}[/mm] die verschiedenen Nullstellen
> von P.
>  Zeigen Sie dass dann gilt:
>  [mm]\mu(P,\lambda_{1})+[/mm] ... + [mm]\mu(P,\lambda_{k}) \le[/mm] grad(P)
>  Gleichheit gilt genau dann, wenn P in Linearfaktoren
> zerfällt.
>
>  Unser Proffessor meinte dass man dies ohne großen Aufwand
> zeigen könnte ...

Wenn [mm] $P(\lambda) [/mm] = 0$ ist und $P [mm] \neq [/mm] 0$, dann ist [mm] $\hat{P} [/mm] := [mm] \frac{P}{X - \lambda}$ [/mm] ebenfalls ein Polynom mit [mm] $\deg \hat{P} [/mm] = [mm] \deg [/mm] P - 1$, mit [mm] $\mu(\hat{P}, \lambda) [/mm] = [mm] \mu(P, \lambda) [/mm] - 1$ und mit [mm] $\mu(\hat{P}, \lambda') [/mm] = [mm] \mu(P, \lambda')$ [/mm] fuer alle [mm] $\lambda' \neq \lambda$. [/mm]

> aber nun weiß ich nicht wie.
>  Selbst beim Gleichgheitsfall hab ich noch keine Beweisidee
> :(

Dir sollte bei dem obigen Beweis jetzt eine Idee kommen. Wenn ein [mm] $\mu(P, \lambda) [/mm] > 0$ ist, kannst du von $P$ den Linearfaktor $X - [mm] \lambda$ [/mm] abspalten.

LG Felix


Bezug
                
Bezug
Polynom und Linearfaktoren: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:18 Di 15.05.2007
Autor: LittleStudi

kann man sagen dass man den Linfaktor [mm] (X-\lambda) [/mm] genau k mal von P abspalten kann und somit der Polynom aus k-fachen Vektoren besteht, die alle lin. unabhängig sind und somit den Polynom grad k erzeugen?

Bezug
                        
Bezug
Polynom und Linearfaktoren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Di 15.05.2007
Autor: M.Rex


> kann man sagen dass man den Linfaktor [mm](X-\lambda)[/mm] genau k
> mal von P abspalten kann und somit der Polynom aus k-fachen
> Vektoren besteht, die alle lin. unabhängig sind und somit
> den Polynom grad k erzeugen?


Nicht ganz:

Wenn [mm] \lambda [/mm] eine k-fache Nullstelle wäre, könnte man [mm] (X-\lambda) [/mm] k-mal abspalten.

Hier kannst du, da die [mm] \lambda_{i}s [/mm] alle verschieden sind [mm] (X-\lambda_{i}) [/mm] jeweils einmal abspalten.

Beispiel:

(x-1)(x+2)(x-3)(x²+1) ist ein Polynom in [mm] \IR [/mm] vom Grad 5. Aber x²+1 zerfällt in [mm] \IR [/mm] nicht weiter in Linearfaktoren.

Hilft das erstmal weiter?

Marius



Bezug
                                
Bezug
Polynom und Linearfaktoren: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:41 Di 15.05.2007
Autor: LittleStudi

Ja, aber im Fall der Gleichheit muss ich es doch gerade k-mal abspalten können damit die "abgespaltenen Teile" die gleiche Anzahl und den selben grad wie das Polynom P haben oder?

Bezug
                                        
Bezug
Polynom und Linearfaktoren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Do 17.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de