www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Polynom zerlegen
Polynom zerlegen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynom zerlegen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:38 Mo 27.10.2008
Autor: elvis-13.09

Aufgabe
Sei [mm] f(X)=\summe_{i=0}^{n}a_{i}X^{i}\in \IZ[X] .d:=ggT(a_{0},...,a_{n}). [/mm]
Also gibt es ein [mm] g(X)\in\IZ[X] [/mm] mit f(X)=d*g(X).
a)Zu zeigen: Wenn es einen Teiler t(X) von g(X) gibt, d.h. g(X)=t(X)s(X), [mm] s(X),t(X)\in\IZ[X]. [/mm] Dann ist ohne Einschränkung [mm] m:=Grad(t(X))<=\bruch{1}{2}n. [/mm] Falls [mm] z_{0},...,z{m}\in\IZ, [/mm] welche werte kann dann [mm] t(z_{i}) [/mm] annehmen?

Hallo!

Falls also t(X)|g(X) gilt, so folgt auch f(X)=d*g(X)=d*t(X)s(X).
Folglich muss für [mm] t(z_{i}) [/mm] gelten: [mm] t(z_{i})|f(z_{i}). [/mm]
Ich vermute nun, dass für [mm] t(z_{i})\in\{\pm d,\pm t(z_{i}),\pm 1,\pm s(z_{i})\} [/mm]
Nun fehlt mir alledings ein stichaltiges Argument weshalb dies gelten sollte. Oder gilt das überhaupt?
Grüße Elvis


        
Bezug
Polynom zerlegen: Querverweis
Status: (Antwort) fertig Status 
Datum: 16:44 Mo 27.10.2008
Autor: statler

Hi!

Den Fall hatten wir gerade hier beim Wickel.

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Polynom zerlegen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:43 Mo 27.10.2008
Autor: elvis-13.09

Hallo Dieter!

Also ich glaube ich bin zu blöd für diese Sache. So wirklich vertanden habe ich es bisher nicht. Und wie ich es im allgeminen erklären soll ist mir auch schleierhaft.
Trotzdem vielen dank.
Edit: hallo Dieter! Ich habe das nun verstanden, denke ich.
Allerdings hätte ich nun eine konkrete Frage:
Betrachten wir das Polynom [mm] P(X)=X^6+X^2+1 [/mm]
nun möcht ich es zerlegen in ein g und h mit deg(g)=2
ich betrachte die stellen 1,0,-1.
Nun kriege ich aber ganz viele möglichkeiten für ein mögliches g. Wie kann ich diese Möglichkeiten reduzieren?

Grüße Elvis

Bezug
                        
Bezug
Polynom zerlegen: leg mal los
Status: (Antwort) fertig Status 
Datum: 08:09 Di 28.10.2008
Autor: statler

Hi!

>   Betrachten wir das Polynom [mm]P(X)=X^6+X^2+1[/mm]
>  nun möcht ich es zerlegen in ein g und h mit deg(g)=2
>  ich betrachte die stellen 1,0,-1.
>  Nun kriege ich aber ganz viele möglichkeiten für ein
> mögliches g. Wie kann ich diese Möglichkeiten reduzieren?

Erstmal gar nicht, jedenfalls wüßte ich so spontan keinen Weg. Aber wenn ich das richtig abschätze, sind das nur 32 Möglichkeiten, also doch ein Klacks!

Wie an anderer Stelle schon gesagt: Das Verfahren ist hochgradig computerisierbar, weil es eben aus einfachen Rechnungen besteht, die aber mehrmals wiederholt werden müssen.

Viel Spaß.
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de