www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Polynomdivision
Polynomdivision < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomdivision: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:19 Mo 22.12.2008
Autor: kawu

Aufgabe
Beispiel 1: Sei [mm] $\mathds{F} [/mm] = [mm] \mathds{Z}_5$. [/mm] In [mm] $\mathds{F}$ [/mm] schreiben wir [mm] $\bruch{a}{b}$ [/mm] für $a *_5 [mm] b^{-1}$, [/mm] $b [mm] \neq [/mm] 0$, zum Beispiel gilt in [mm] $\mathds{F}$ [/mm]

[mm] $\bruch{2}{3} [/mm] = 4 = -1$

denn [mm] $\varrho_5(3 [/mm] * 4) = 2$ und $4 + _5 1 = 0$. Seien

$A = [mm] 2X^4 [/mm] + [mm] X^2 [/mm] + X + 1, N = [mm] 3X^2 [/mm] + 4X [mm] \in [/mm] F[X]$.

Die Division A : N besteht aus drei Schritten.

1.) Wir bilden:
[mm] $R_1 [/mm] = A - [mm] \bruch{2}{3}X^2 [/mm] * N = A - [mm] 4X^2 [/mm] * N = [mm] 2X^4 [/mm] + [mm] X^2 [/mm] + X + 1 - [mm] 2X^4 [/mm] - [mm] X^3 [/mm] = [mm] 4X^3 [/mm] + [mm] X^2 [/mm] + X + 1$

Also ist $A = [mm] 4X^3 [/mm] + [mm] X^2 [/mm] * N + [mm] R_1$ [/mm] und grad [mm] R_1 [/mm] < grad A

[...]

(Endliche Körper von Hanz Kurzweil, Seite 25)

Das oben angeführte Beispiel stammt aus einem Buch, das das Rechnen mit Polynomen beschreibt um die Vorwärtsfehlerkorrektur mit Reed-Solomon-Codes zu erklären.

Schon der Beginn des Beispiels wirft bei mir die Frage auf, was dort überhaupt gemacht wurde:

wieso ist [mm] $\bruch{2}{3} [/mm] = 4 = -1$ und wieso wurden diese zwei drittel als Koeffizient in Schritt 1 der Division A : N mitgenommen?


lg, KaWu


        
Bezug
Polynomdivision: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Mo 22.12.2008
Autor: reverend

Na, die Schreibweise gilt sonst als nicht ganz sauber, aber man kann sie sich ja so definieren. In der vorliegenden Restklassenbetrachtung [mm] \mod{5} [/mm] (und nur dort!) ist die Gleichungskette richtig:
[mm] \bruch{2}{3}=4=-1 [/mm]

Üblicherweise vermeidet man Brüche und setzt statt des Gleichheitszeichen die Äquivalenz [mm] \equiv. [/mm]

Gemeint ist (linkes Gleichheitszeichen):
[mm] 2\equiv4*3\mod{5} \gdw \bruch{2}{3}\equiv4\mod{5} [/mm]

Bezug
                
Bezug
Polynomdivision: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:24 Mo 22.12.2008
Autor: kawu

Und wieso ist die 4 = -1? Und wieso wurde [mm] $\bruch{2}{3}$ [/mm] im Schritt 1 der Division der beiden Polynome verwendet? Das ist mir leider noch nicht so ganz klar.

lg, KaWu


Bezug
                        
Bezug
Polynomdivision: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 Mo 22.12.2008
Autor: angela.h.b.


> Und wieso ist die 4 = -1?

Hallo,

Du rechnest ja gerade modulo 5.

Nun muß man sich erstmal klarmachen, was mit -1 gemeint ist: es ist das inverse Element von 1 bzgl der Addition, als das Element, für welches  1+ ? =Null ist.

Es ist 1+4=5, und wenn man mod 5 rechnet, ist 5=0.

Also ist 4= -1.

Und wieso wurde [mm]\bruch{2}{3}[/mm] im

> Schritt 1 der Division der beiden Polynome verwendet? Das
> ist mir leider noch nicht so ganz klar.

ich hoffe, daß ich auf die richtige Frage antworte.

berechnet werden soll


[mm] (\blue{2X^4} [/mm] + [mm] X^2 [/mm] + X + 1) : [mm] (\green{3X^2}+ [/mm] 4X) =  ???


ich tue  jetzt erstmal so, als wäre ich in den reellen Zahlen.

Als erstes überlege ich mir, womit ich  [mm] \green{3X^2} [/mm] multiplizieren muß, um [mm] \blue{2X^4} [/mm] zu erhalten. Ergebnis des Nachdenkens: mit [mm] \bruch{2}{3}X^2. [/mm]

Also


[mm] (\blue{2X^4} [/mm] + [mm] X^2 [/mm] + X + 1) : [mm] (\green{3X^2}+ [/mm] 4X) =  [mm] \bruch{2}{3}X^2 [/mm] + ???
[mm] -(2X^4+\bruch{8}{3}X^3) [/mm]
----------
...


usw.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de