www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Polynomdivision
Polynomdivision < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomdivision: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:16 So 07.06.2009
Autor: philipp-100

Hallo,
eigentlich bereitet mir die klassische polynomdivision keine probleme.
bei der hier allerdings, weiß ich leider nicht weiter:


[mm] (b^3-a^3)/(3*(b-a)) [/mm] = ?

sonst gabs ja immer nur einen divisor der form (x-a)

wenn ich hier allerdings b zu meinem x mache klappts nicht mehr.

das bringt mich jetzt echt zur weissglut.....

das kann man bestimmt auch mit der binomischen formel machen, will ich aber nicht da ich es so verstehen will

        
Bezug
Polynomdivision: Antwort
Status: (Antwort) fertig Status 
Datum: 19:20 So 07.06.2009
Autor: abakus


> Hallo,
>  eigentlich bereitet mir die klassische polynomdivision
> keine probleme.
>  bei der hier allerdings, weiß ich leider nicht weiter:
>  
>
> [mm](b^3-a^3)/(3*(b-a))[/mm] = ?
>  
> sonst gabs ja immer nur einen divisor der form (x-a)
>  
> wenn ich hier allerdings b zu meinem x mache klappts nicht
> mehr.
>  
> das bringt mich jetzt echt zur weissglut.....

Hallo,
es ist [mm] \bruch{b^3-a^3}{b-a}=b^2+ab+a^2.. [/mm]
Gruß Abakus

>  
> das kann man bestimmt auch mit der binomischen formel
> machen, will ich aber nicht da ich es so verstehen will


Bezug
                
Bezug
Polynomdivision: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:24 So 07.06.2009
Autor: philipp-100

Hallo Abakus,
die lösung kenn ich schon, wäre an dem rechenweg interessiert.
gruß
philipp

Bezug
                        
Bezug
Polynomdivision: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 So 07.06.2009
Autor: angela.h.b.

Hallo,

es ist ja

> > $ [mm] (b^3-a^3)/(3\cdot{}(b-a)) [/mm] $ = ?  

dasselbe wie

[mm] \bruch{1}{3}*\bruch{b^3-a^3}{b-a}, [/mm]

so daß Du Dich hauptsächlich auf die Division

[mm] (b^3-a^3) [/mm] : (b-a)

stürzen mußt. Das Multiplizieren mit [mm] \bruch{1}{3} [/mm] dürfte ja kein Problem sein.

Wenn Du das mit x rechnen kannst, sollte es doch mit b auch funktionieren...

Wo liegt Dein Problem?

Mein Anfang:

  [mm] (b^3-a^3) [/mm] : [mm] (b-a)=b^2 [/mm] ...
[mm] -(b^2-ab^2) [/mm]
----
   [mm] ab^2-a^3 [/mm]
           [mm] \vdots [/mm]

Gruß v. Angela

Bezug
                                
Bezug
Polynomdivision: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:39 So 07.06.2009
Autor: philipp-100

danke,
hatte irgendwie einen hänger.

Bezug
                        
Bezug
Polynomdivision: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 So 07.06.2009
Autor: XPatrickX

Hallo,

vielleicht hilft folgendes:

[mm] $(b^3+0b^2+0b-a^3):(b-a)$ [/mm]

Dann hast du die "gewöhnliche" Form, mit b=x und a eine feste Zahl.


Gruß Patrick

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de