www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Polynomdivision m. komplx Zahl
Polynomdivision m. komplx Zahl < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomdivision m. komplx Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:56 Mo 16.11.2009
Autor: hotsauce

Nabend,

folgende Funktion ist gegeben

  [mm] (z^4+z^3+2 z^2+z+1):(z-i)=z^3 [/mm]
- [mm] (z^4+iz^3) [/mm]
     [mm] -i+2z^2 [/mm]


was mache ich ab hier?

        
Bezug
Polynomdivision m. komplx Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 21:07 Mo 16.11.2009
Autor: MathePower

Hallo hotsauce,

> Nabend,
>  
> folgende Funktion ist gegeben
>  
> [mm](z^4+z^3+2 z^2+z+1):(z-i)=z^3[/mm]
>  - [mm](z^4+iz^3)[/mm]
>       [mm]-i+2z^2[/mm]
>  
>
> was mache ich ab hier?


Da i eine Nullstelle des oben angegebenen Polynoms ist,
ist auch -i eine Nullstelle desselben Polynoms.

Das heißt, daß Du die komplexe Rechnung hier vermeiden kannst.

Führe also eine Polynomdivison durch [mm]\left(z-i\right)*\left(z+i\right)=z^{2}+1[/mm] aus.


Gruss
MathePower

Bezug
                
Bezug
Polynomdivision m. komplx Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:10 Mo 16.11.2009
Autor: hotsauce


> Hallo hotsauce,
>  

>
> Da i eine Nullstelle des oben angegebenen Polynoms ist,
>  ist auch -i eine Nullstelle desselben Polynoms.

Wieso ist denn -i auch eine Nullstelle?

> Das heißt, daß Du die komplexe Rechnung hier vermeiden
> kannst.
>  
> Führe also eine Polynomdivison durch
> [mm]\left(z-i\right)*\left(z+i\right)=z^{2}+1[/mm] aus.

hier weiß ich überhaupt nicht was du meinst :-(



Bezug
                        
Bezug
Polynomdivision m. komplx Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 21:18 Mo 16.11.2009
Autor: MathePower

Hallo hotsauce,

> > Hallo hotsauce,
>  >  
>
> >
> > Da i eine Nullstelle des oben angegebenen Polynoms ist,
>  >  ist auch -i eine Nullstelle desselben Polynoms.
>  
> Wieso ist denn -i auch eine Nullstelle?


"-i" ist auch Nullstelle des Polynoms, da dies reell ist.
Das heißt, das Polynom hat nur reelle Koeffizienten.


>  
> > Das heißt, daß Du die komplexe Rechnung hier vermeiden
> > kannst.
>  >  
> > Führe also eine Polynomdivison durch
> > [mm]\left(z-i\right)*\left(z+i\right)=z^{2}+1[/mm] aus.
>  
> hier weiß ich überhaupt nicht was du meinst :-(
>  


Berechne hier:

[mm]\left(z^{4}+z^{3}+2*z^{2}+z+1\right):\left(z^{2}+1\right)[/mm]



Gruss
MathePower
  

Bezug
                                
Bezug
Polynomdivision m. komplx Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:15 Mo 16.11.2009
Autor: hotsauce

Hmm...

also wir haben ja den Divisor: (z-i)

Das sagt mir ja, dass ich bei "i" eine Nullstelle habe.

mehr kann ich da iwie nicht sehen und ich verstehe nicht, wieso ich durch [mm] (z^2+1) [/mm] ... wie kommt das zu stande?



Bezug
                                        
Bezug
Polynomdivision m. komplx Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 22:25 Mo 16.11.2009
Autor: MathePower

Hallo hotsauce,

> Hmm...
>  
> also wir haben ja den Divisor: (z-i)
>  
> Das sagt mir ja, dass ich bei "i" eine Nullstelle habe.
>
> mehr kann ich da iwie nicht sehen und ich verstehe nicht,
> wieso ich durch [mm](z^2+1)[/mm] ... wie kommt das zu stande?
>  


Siehe hier: []Fundamentalsatz der Algebra


Gruss
MathePower  

Bezug
                                                
Bezug
Polynomdivision m. komplx Zahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:42 Mo 16.11.2009
Autor: hotsauce

wunderbare sache, den kannte ich noch nicht, vielen dank für die mühe... morgen gehts weiter mit weiteren fragen ;-)

Gute Nacht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de