www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Polynome
Polynome < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynome: Verständnis + Tipp
Status: (Frage) beantwortet Status 
Datum: 13:48 Mi 08.12.2010
Autor: TrockenNass

Aufgabe
1. Das Polynom [mm] x^4-x^3-10x^2-x+1 [/mm] besitzt vier verschiedene reelle Nullstellen

2. Jedes Polynom ungeraden Grades, [mm] \summe_{k=0}^{2n+1} a_k x^k [/mm] mit [mm] n\in \IN, a_k\in \IR [/mm] und [mm] a_{2n+1}\not=0, [/mm] hat eine reelle Nullstelle

zu 1.
Genügt es die Nullstellen mit der Polynomdivison zu berechen? Oder muss ich noch irgendwas zeigen.

zu 2.
zunächst einmal eine Frage zum Verständnis:
Die Aufgabenstellung sagt aus: Wenn ich z.B. eine Funktion 5. Grades habe, dann hat die Funktion auch 5 Nullstellen. D.h. pro Polynom kommt eine Nullstelle dazu.
Wenn ich die Aufgabe richtig verstanden hab, wie fange ich mit dem Beweis an?

        
Bezug
Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 Mi 08.12.2010
Autor: schachuzipus

Hallo TrockenNass,

> 1. Das Polynom [mm]x^4-x^3-10x^2-x+1[/mm] besitzt vier verschiedene
> reelle Nullstellen
>
> 2. Jedes Polynom ungeraden Grades, [mm]\summe_{k=0}^{2n+1} a_k x^k[/mm]
> mit [mm]n\in \IN, a_k\in \IR[/mm] und [mm]a_{2n+1}\not=0,[/mm] hat eine
> reelle Nullstelle
> zu 1.
> Genügt es die Nullstellen mit der Polynomdivison zu
> berechen?

Das kannst du versuchen. Wenn du die 4 Nullstellen explizit angeben kannst, bist du fertig.

> Oder muss ich noch irgendwas zeigen.

Vllt. ist es einfacher, das Polynom zu zerlegen ist [mm](x^2+ax+b)(x^2+cx+d)[/mm] mit noch zu ermittelnden Koeffizienten [mm]a,b,c,d[/mm].

Dann kannst du die verbleibenden quadrat. Polynome untersuchen - dafür gibt's ja Formeln ...


Ansonsten kannst du auch den Zwischenwertsatz nutzen, Polynome sind ja stetig, suche dir Intervalle [mm][a,b][/mm] mit [mm]p(a)<0[/mm] und [mm]p(b)>0[/mm] (oder umgekehrt und wende den ZWS an


>
> zu 2.
> zunächst einmal eine Frage zum Verständnis:
> Die Aufgabenstellung sagt aus: Wenn ich z.B. eine Funktion
> 5. Grades habe, dann hat die Funktion auch 5 Nullstellen.

Nein, da steht doch nur: es gibt EINE Nullstelle

> D.h. pro Polynom kommt eine Nullstelle dazu.

Was meinst du mit "Da kommt ein Polynom dazu" ??

Die Summenschreibweise ist doch nur eine abkürzende Darstellung für ein Polynom ungeraden Grades.

Ausgeschrieben steht da: Zeige, dass für bel. [mm]n\in\IN[/mm] das Polynom [mm]a_{2n+1}x^{2n+1}+a_{2n}x^{2n}+\ldots+a_1x+a_0[/mm] ([mm]a_{2n+1}\neq 0[/mm]) (mind.) eine reelle NST hat.


> Wenn ich die Aufgabe richtig verstanden hab, wie fange ich
> mit dem Beweis an?

Nutze die Stetigkeit von Polynomen und den ZWS.

Was kann für [mm]x\to\pm\infty[/mm] passieren?

Tipp: Fallunterscheidung bzg. [mm]a_{2n+1}[/mm]

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de