www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Polynome
Polynome < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:39 Mo 20.12.2010
Autor: lauralikesmath

Aufgabe
Sei p eine Primzahl und n [mm] \in \IN [/mm] positiv.
Zeigen Sie:

1.) Ein irreduzibles Polynom f [mm] \in \IF_{p}[X] [/mm] ist gdw ein Teiler von [mm] P_{n} [/mm] = [mm] X^{p^{n}}-X, [/mm] wenn grad(f) ein Teiler von n ist.

2.) Das Polynom [mm] P_{n} \in \IF_{p}[X] [/mm] ist das Produkt aller irreduziblen normierten Polynome f [mm] \in \IF_{p}[X] [/mm] mit der Eigenschaft, dass grad(f) ein Teiler von n ist.

Hallo ihr!

Ich beschäftige mich gerade mit obiger Aufgabe:
Also die 2 scheint ja irgendwie aus der 1 zu folgen, deshalb habe ich mich erstmal nur mit der 1 beschäftigt:

Es ist ja [mm] a^{p^{n}}=a, [/mm] also [mm] P_{n}(a)=0 [/mm] für alle a [mm] \in \IF_{p}. [/mm] D.h. die Linearfaktoren von [mm] P_{n} [/mm] sind alle (X-a) (eben für alle a).
[mm] P_{n} [/mm] hat nur einfache Nullstellen, weil [mm] P_{n}'=-1, [/mm] also [mm] P_{n}=\produkt_{a}^{}(X-a) [/mm] .

So, aber wie gehts jetzt weiter? Damit kann ich zwar P in LF zerlegen, aber wie komme ich von da auf die irreduziblen Polynome?

Wäre super, wenn mir jemand helfen könnte :-)

Liebe Grüße,
Laura

        
Bezug
Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Mo 20.12.2010
Autor: statler

Mahlzeit!

> Sei p eine Primzahl und n [mm]\in \IN[/mm] positiv.
>  Zeigen Sie:
>  
> 1.) Ein irreduzibles Polynom f [mm]\in \IF_{p}[X][/mm] ist gdw ein
> Teiler von [mm]P_{n}[/mm] = [mm]X^{p^{n}}-X,[/mm] wenn grad(f) ein Teiler von
> n ist.
>  
> 2.) Das Polynom [mm]P_{n} \in \IF_{p}[X][/mm] ist das Produkt aller
> irreduziblen normierten Polynome f [mm]\in \IF_{p}[X][/mm] mit der
> Eigenschaft, dass grad(f) ein Teiler von n ist.
>  Hallo ihr!
>  
> Ich beschäftige mich gerade mit obiger Aufgabe:
>  Also die 2 scheint ja irgendwie aus der 1 zu folgen,
> deshalb habe ich mich erstmal nur mit der 1 beschäftigt:
>  
> Es ist ja [mm]a^{p^{n}}=a,[/mm] also [mm]P_{n}(a)=0[/mm] für alle a [mm]\in \IF_{p}.[/mm]
> D.h. die Linearfaktoren von [mm]P_{n}[/mm] sind alle (X-a) (eben
> für alle a).
>  [mm]P_{n}[/mm] hat nur einfache Nullstellen, weil [mm]P_{n}'=-1,[/mm] also
> [mm]P_{n}=\produkt_{a}^{}(X-a)[/mm] .

Was weißt du denn so über die Struktur von endlichen Körpern? Und welchen Grad hat [mm] F(p^n) [/mm] über F(p)? Kennst du den Gradsatz? Kannst du ihn hier irgendwie einbringen?

Soweit erstmal und Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:20 Mo 20.12.2010
Autor: lauralikesmath

Hallo!

Also den Gradsatz kenne ich, allerdings ist mir gerade kein Zusammenhang zu irreduziblen Polynomen bekannt.

Liebe Grüße,
Laura

Bezug
                        
Bezug
Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Mo 20.12.2010
Autor: statler

Mahlzeit!

> Also den Gradsatz kenne ich, allerdings ist mir gerade kein
> Zusammenhang zu irreduziblen Polynomen bekannt.

Welchen Grad hat denn nun [mm] F(p^n) [/mm] über F(p)? Und was weißt du über die multiplikative Gruppe eines endl. Körpers?

Gruß
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de