www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Polynominterpolation
Polynominterpolation < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynominterpolation: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 06:15 Fr 29.08.2008
Autor: Brumm

Hi,

Mir ist bekannt, dass wenn ich n+1 Punkte [mm] $(x_0,y_0)$ [/mm] bis [mm] $(x_n,y_n)$ [/mm] gegeben habe, wobei die [mm] $x_i$ [/mm] paarweise verschieden sind, dass es dann genau ein Polynom n.ten Grades $p(x) = [mm] \sum_{i=0}^{n} \lambda_i [/mm] * [mm] x^i$ [/mm] gibt, dass [mm] $p(x_i) [/mm] = [mm] y_i$ [/mm] für $i = 0, [mm] \ldots, [/mm] n$ erfüllt.

Was ist nun aber, wenn ich anstelle der $n+1$ Punkte nur $n$ gegeben habe? Kann ich dann etwa immer annehmen, dass [mm] $\lambda_3 [/mm] = 0$ (natürlich nur falls $n [mm] \geq [/mm] 3$), also das ein bestimmter Koeffizient null ist?

Vielen Dank für die Hilfe,
Brumm


        
Bezug
Polynominterpolation: Antwort
Status: (Antwort) fertig Status 
Datum: 07:40 Fr 29.08.2008
Autor: angela.h.b.


> Hi,
>  
> Mir ist bekannt, dass wenn ich n+1 Punkte [mm](x_0,y_0)[/mm] bis
> [mm](x_n,y_n)[/mm] gegeben habe, wobei die [mm]x_i[/mm] paarweise verschieden
> sind, dass es dann genau ein Polynom n.ten Grades [mm]p(x) = \sum_{i=0}^{n} \lambda_i * x^i[/mm]
> gibt, dass [mm]p(x_i) = y_i[/mm] für [mm]i = 0, \ldots, n[/mm] erfüllt.
>
> Was ist nun aber, wenn ich anstelle der [mm]n+1[/mm] Punkte nur [mm]n[/mm]
> gegeben habe?

Hallo,

dann weißt Du, daß es genau ein Polynom vom Grad n-1 gibt, so daß der Graph durch diese vorgegebenen n Punkte verläuft.

Wenn Du nun Polynome vom Grad n oder n+37 suchst, die durch diese vorgegebenen n Punkte gehen, so wirst Du viele finden.

Ein Beispiel:

Gegeben seien die Stützstellen  (-2 , 0), (0, -2) und (1,0).

Es gibt genau ein Polynom vom grad 2, welches durch diese drei Punkte geht, nämlich p(x)=x²+x-2 =(x-1)(x+2)

Suchst Du nun Polynome vom Grad 3, die durch diese Punkte gehen, wirst Du viele finden.

Für [mm] p_3(x)=ax^3+bx^2+cx+d [/mm] hättest Du das LGS

-8a+4b-2c+d=0
d=-2
a+b+c+d=0

zu lösen, und daß die Lösung hierfür nicht eindeutig ist, dürfte klar sein. Keinesfalls bekommst Du hier heraus, daß der Koeffizient a zwangsläufig =0 sein muß.

Gruß v. Angla

> Kann ich dann etwa immer annehmen, dass
> [mm]\lambda_3 = 0[/mm] (natürlich nur falls [mm]n \geq 3[/mm]), also das ein
> bestimmter Koeffizient null ist?
>  
> Vielen Dank für die Hilfe,
>  Brumm
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de