www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Polynomring
Polynomring < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomring: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:41 Sa 17.01.2004
Autor: Jessica

Hallo zusammen.

Also ich habe bei einer Multiple-Choice Aufgabe ein Problem. Bestimmt könnt ihr mir dabei helfen.

Also K[X] Polynomring über dem Körper K ind der Unbestimmten X

Ist f[mm]\in [/mm]K[X] invertierbar, so ist Grad f = 0.

Ist diese Behauptung war oder falsch? Könntet ihr mir vielleicht erklären warum es wahr ist oder falsch ist?

Danke Jessica.

        
Bezug
Polynomring: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 Sa 17.01.2004
Autor: Stefan

Hallo Jessica,

in [mm]K[X][/mm] gilt die Gradformel:

[mm]grad(f\cdot g) = grad(f) + grad(g)[/mm].

Kennst du die aus der Vorlesung? Wenn nein, dann versuche sie kurz zu beweisen.

Sie hilft dir in jedem Fall weiter. Damit ist die Aussage trivial. :-)

Melde dich mal mit einem Vorschlag oder weiteren Fragen.

Alles Gute
Stefan

Bezug
                
Bezug
Polynomring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 So 18.01.2004
Autor: Jessica

Hallo Stefan.

Danke für den Tipp.
Also ich denke, dass diese Aussage falsch ist, da wenn f invertierbar ist das inverse Element existiert. Ich bezeichne es mal f-1.

Ich habe mir das ein einem Beispiel mal klar gemacht.

Sei zum Beispiel f= x3 dann ist f-1=x-3

f*f-1=x0

Grad(f*f-1)=-[mm]\infty [/mm] bzw. hat keinen Grad.
Grad(f)= 3
Grad(f-3)= -3

Dann wäre Grad(f)+Grad(f-1)=3+(-3)=0

Somit wäre ein Wiederspruch zur Gradformel.

Habe ich das mir jetzt richtig hergeleitet oder habe ich einen Fehler in meiner Begründung.

Jessica.

Bezug
                        
Bezug
Polynomring: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 So 18.01.2004
Autor: Stefan

Hallo Jessica,

also, negative Grade sind gar nicht zugelassen. Insofern macht deine Begründung leider keinen Sinn.

Stattdessen geht es so (aber nur dann, wenn man die Gradformel benutzen darf):

Es sei [mm]f(x) \in \IK[x][/mm] mit [mm]grad(f) \ge 1[/mm].

Wir nehmen an, es gäbe ein Inverses von [mm]f(x)[/mm], also ein [mm]g(x) \in \IK[x][/mm]  mit

[mm]f(x) \cdot g(x) = 1[/mm].

Wir bilden auf beiden Seiten den Grade der Polynome und erhalten unter der Beachtung der Gradformel:

[mm]grad(f) + grad(g) = grad(f\cdot g) = grad(1) = 0[/mm].

Dies stellt aber wegen

[mm]grad(f) \ge 1[/mm] und [mm]grad(g) \ge 0[/mm]

einen Widerspruch dar. Daher kann kein [mm]f(x) \in \IK[x][/mm] mit [mm]grad(f) \ge 1[/mm] ein Inverses in [mm]\IK[x][/mm] besitzen.

Dagegen besitzt jedes [mm]f(x) \in \IK[x][/mm] mit [mm]grad(f)=0[/mm] ein Inverses in [mm]\IK[x][/mm], da der Unterring der konstanten Polynome isomorph (im Simme eines Ringisomorphismus) zum Körper [mm]\IK[/mm] ist.

Alles klar?

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de