www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Populationsmodell
Populationsmodell < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Populationsmodell: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:01 Do 22.10.2009
Autor: tAtey

Aufgabe
P(t) beschreibe die Populationsgröße einer Population von wilden Eichhörnchen zum Zeitpunkt t. In sieben Jahren erhöhrt sich die Population von 2134 auf 3178 Tiere. Wir nehmen an, dass die Funktion P die Gestalt P(t) = [mm] p0*e^{\lambda*t} [/mm] mit reellen Konstanten p0 und lambda hat.

a) Bestimmen Sie p0 und lambda für die obige Eichhörnchenpopulation.
b) wir groß war die Population am Ende des ersten Jahres?
c) Wie groß ist die Population am Ende des 10ten Jahres?
d) Wie lange dauert es, bis sich die Population verdoppelt hat?

Hallo,

folgendes Problem, das mit dem Matheunterricht liegt schon ein paar Jährchen hin und fangen gerade wie der Prof sagt "ganz langsam" damit an, damit auch jeder mitkommt.
Haben Übungszettel bekommen, jedoch konnte ich mit der Frage hier nicht viel anfangen. Hatte schon früher das mit der Exponentialfunktion nicht so verstanden.
Kann mir einer weiterhelfen?
Weiß auch nicht, was das lambda bedeutet und muss ich für t zum Zeitpunkt, als die Population 2134 betrug 0 setzen? dann wäre P(t)=p0 und somit 2134. Aber ja auch nur zum Zeitpunkt 0 und nicht zum Zeitpunkt in sieben Jahren.
AHH, ich hab keine Ahnung. :)
Hilfe wäre super!

Liebe Grüße

        
Bezug
Populationsmodell: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Do 22.10.2009
Autor: M.Rex

Hallo

> P(t) beschreibe die Populationsgröße einer Population von
> wilden Eichhörnchen zum Zeitpunkt t. In sieben Jahren
> erhöhrt sich die Population von 2134 auf 3178 Tiere. Wir
> nehmen an, dass die Funktion P die Gestalt P(t) =
> [mm]p0*e^{\lambda*t}[/mm] mit reellen Konstanten p0 und lambda hat.
>  
> a) Bestimmen Sie p0 und lambda für die obige
> Eichhörnchenpopulation.

Du hast [mm] p(t)=p_{0}*e^{\lambda*t} [/mm]
Hierbei sind [mm] \lambda [/mm] und [mm] p_{0} [/mm] unbekannt, aber du weisst, dass [mm] p(\green{0})=\blue{2134} [/mm] und [mm] p(\green{7})=\blue{3178} [/mm]

Also hast du ein Gleichungssystem mit zwei Gleichungen und zwei Variablen, nömlich:
[mm] \vmat{\blue{3178}=p_{0}*e^{\green{7}\lambda}\\\blue{2134}=p_{0}*e^{\green{0}\lambda}} [/mm]
[mm] \gdw \vmat{3178=p_{0}*e^{7\lambda}\\2134=p_{0}*e^{0}} [/mm]

Damit kannst du nun [mm] p_{0} [/mm] und [mm] \lambda [/mm] bestimmen, und damit deine konkrete Funktiosngleichung.

>  b) wir groß war die Population am Ende des ersten
> Jahres?

Berechne p(1)

>  c) Wie groß ist die Population am Ende des 10ten Jahres?

Berechne p(10)

>  d) Wie lange dauert es, bis sich die Population verdoppelt
> hat?

Berechne das [mm] \hat{t}, [/mm] bei dem 4268 Tiere vorhanden sind, also [mm] p(\hat{t})=4268 [/mm]


Marius

Bezug
                
Bezug
Populationsmodell: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:33 Do 22.10.2009
Autor: tAtey

ich danke! :)
manchmal braucht man nen Schubs bis es klickt. :)

a) p0= 2134, lambda = 0,0569
b) P(1) = 2258,95
c) P(10) = 3769,7
d) t = 12,18

richtig?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de