www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Positive Definitheit
Positive Definitheit < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Positive Definitheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 Di 12.07.2011
Autor: hilbert

Ich habe zwei Fragen für meine Klausur nächste Woche in Lineare Algebra.

Wie zeige ich, dass A dann und nur dann positiv definit ist, wenn [mm] \bruch{A+A^T}{2} [/mm] positiv definit ist?

Und meine andere Frage ist ob ein ONS oder ein OGS immer linear unabhängig ist?

Vielen Dank im Voraus

        
Bezug
Positive Definitheit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Di 12.07.2011
Autor: Blech

Hi,

> Wie zeige ich, dass A dann und nur dann positiv definit ist, wenn $ [mm] \bruch{A+A^T}{2} [/mm] $ positiv definit ist?

Wie üblich, zuerst Hinrichtung, dann Begrä.., erm Rückrichtung.

A ist positiv definit, das heißt was genau?

Und was soll dann daraus für [mm] $\frac{A + A^t}{2}$ [/mm] folgen? Tut es das?


[mm] $\frac{A + A^t}{2}$ [/mm] ist positiv definit, das heißt was genau?

Und was soll dann daraus für A folgen? Tut es das?


Wir sind hier keine Lösungsfabrik. Wenn Du an einem konkreten Punkt hängst, dann schreib das.



> Und meine andere Frage ist ob ein ONS oder ein OGS immer linear unabhängig ist?

Sagen wir [mm] $\{a_i\}_{i\in I}$ [/mm] ist ein OGS. Welche Bedingung müßte es erfüllen, damit es linear unabhängig ist?


ciao
Stefan

Bezug
                
Bezug
Positive Definitheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:53 Di 12.07.2011
Autor: hilbert

Also zu dem OGS:

Ich habe mir das so gedacht, wäre es linear abhängig so könnte ich einen Vektor aus der Familie als Linearkombination der anderen darstellen.
Also nehme ich jetzt einfach an die Familie habe n Vektoren und ich kann den nten Vektor [mm] v_n\not=0 [/mm] darstellen.
Dann ist doch
[mm] v_n [/mm] = [mm] \summe_{i=1}^{n-1}x_i v_i [/mm]
Damit gilt dann:
[mm] [/mm] = [mm] \summe_{i=1}^{n-1}x_i =0 [/mm] da Orthogonal.

Aber [mm] [/mm] ist auch [mm] <\summe_{j=1}^{n-1}x_j v_j,\summe_{i=1}^{n-1}x_i v_i> [/mm]
= [mm] \summe_{j=1}^{n-1}\summe_{i=1}^{n-1}x_i x_j [/mm]

Jetzt gibt es 2 Möglichkeiten 0 ist enthalten in der Familie oder nicht.

Wenn nicht, dann wird aus [mm] [/mm] = [mm] \alpha*\delta_{ij} [/mm]
Also erhalten ich: [mm] \summe_{j=1}^{n-1}x_j^2*\alpha [/mm] da hier [mm] \alpha [/mm] ungleich 0 hilt folgt also das alle [mm] x_i [/mm] Null sein müssten, also auch [mm] v_n. [/mm]

Ist jetzt die 0 zugelassen als Elementz so sind die Vektoren nicht linear unabhängig.

Zur positiven Definitheit:

Es gilt A ist positiv definit, also ist [mm] x^{T}Ax \ge [/mm] 0 und [mm] x^{T}Ax [/mm] = 0 [mm] \gdw [/mm] x=0

Also untersuche ich jetzt [mm] x^{T}\bruch{A+A^{T}}{2}X [/mm]
das ist dann ja [mm] \bruch{x^{T}Ax+x^{T}A^{T}x}{2} [/mm]
Kann ich jetzt sagen, dass [mm] A^{T} [/mm] positiv definit ist? Dann gilt das ganze offensichtlich.

Vielen Dank schonmal

Bezug
                        
Bezug
Positive Definitheit: Antwort
Status: (Antwort) fertig Status 
Datum: 01:05 Mi 13.07.2011
Autor: Blech

Hi,

> Aber $ [mm] [/mm] $ ist auch $ [mm] <\summe_{j=1}^{n-1}x_j v_j,\summe_{i=1}^{n-1}x_i v_i> [/mm] $

Es ist auch [mm] $\langle v_n, v_n\rangle$. [/mm] Und das ist >0 für [mm] $v_n\neq [/mm] 0$, weil das Skalarprodukt positiv ist.


> Kann ich jetzt sagen, dass $ [mm] A^{T} [/mm] $ positiv definit ist?

Jo, denn [mm] $x^t [/mm] A x = [mm] x^t A^t [/mm] x$ für alle A und x. (wieso?)
(damit brauchst Du natürlich die PD nicht mehr, weil sich Dein Bruch sofort zu $x^tAx$ vereinfacht. Aber es ist immer gut, das zu wissen =)

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de