www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Potentiale
Potentiale < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potentiale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:15 So 01.01.2012
Autor: dodo4ever

Hallo sehr geehrter Matheraum und zunächst einmal ein frohes neues Jahr.

Ich habe leider ein kleines Problem mit folgender Aufgabe:

Für welche Funktionen f besitzt die Funktion (x,y,z) [mm] \mapsto q(x,y,z)=\pmat{ f(x,y,z) \\ z cos(y)+cos(z) \\ sin(y)-ysin(z)} [/mm] ein Potential? Bestimme diese Potentiale.


Die Existenz eines Potential folgt ja aus der Wirbelfreiheit, d.h. rot q=0 und der Konvexität der Funktion.

rot [mm] q=\nabla \times [/mm] q = [mm] \pmat{ \bruch{\partial}{\partial x} \\ \bruch{\partial}{\partial y} \\ \bruch{\partial}{\partial z}} \times \pmat{ f(x,y,z) \\ z cos(y)+cos(z) \\ sin(y)-ysin(z)}=\pmat{ \bruch{\partial}{\partial y}(sin(y)-ysin(z))-\bruch{\partial}{\partial z}(z cos(y)+cos(z)) \\ \bruch{\partial}{\partial z}(f(x,y,z))-\bruch{\partial}{\partial x}(sin(y)-ysin(z)) \\ \bruch{\partial}{\partial x}(zcos(y)+cos(z))-\bruch{\partial}{\partial y}(f(x,y,z))} [/mm]

[mm] \Rightarrow \pmat{cosy-cosy \\ \bruch{\partial}{\partial z}f(x,y,z)-0 \\ 0-\bruch{\partial}{\partial y}f(x,y,z)}=\pmat{0 \\ 0 \\ 0} [/mm]


Es muss ja demnach gelten: [mm] \bruch{\partial}{\partial z}f(x,y,z)=0 [/mm] und  [mm] \bruch{\partial}{\partial y}f(x,y,z)=0 [/mm]


Ich entscheide mich somit z.B. für die Funktion [mm] f(x,y,z)=x^2 [/mm]

[mm] \Rightarrow \pmat{cosy-cosy \\ 0-0 \\ 0-0}=\pmat{0 \\ 0 \\ 0} [/mm]


Das Potential [mm] \varphi [/mm] soll nun aus der Bedingung [mm] -\vec{F}=\nabla \varphi [/mm] berechnet werden

[mm] \bruch{\partial \varphi}{\partial x}=-F_1 [/mm]
[mm] \bruch{\partial \varphi}{\partial y}=-F_2 [/mm]
[mm] \bruch{\partial \varphi}{\partial z}=-F_3 [/mm]

bzw. (1) [mm] \bruch{\partial \varphi}{\partial x}=-x^2 [/mm]
bzw. (2) [mm] \bruch{\partial \varphi}{\partial y}=-zcos(y)-cos(z) [/mm]
bzw. (3) [mm] \bruch{\partial \varphi}{\partial z}=-sin(y)+ysin(z) [/mm]


Im 1. Schritt möchte ich nun (1), also [mm] \bruch{\partial \varphi}{\partial x}=-x^2 [/mm] nach x integrieren.

Ich erhalte [mm] \varphi (x,y,z)=-\integral x^2 dx+C(y,z)=-\bruch{1}{3}x^3+C(y,z) [/mm]

[mm] \Rightarrow \varphi(x,y,z)=-\bruch{1}{3}x^3+C(y,z) [/mm]

Wobei C(y,z) eine Konstante bzgl. x ist.


Im 2. Schritt setze ich nun [mm] \varphi(x,y,z)=-\bruch{1}{3}x^3+C(y,z) [/mm] in (2), also [mm] \bruch{\partial \varphi}{\partial y}=-zcos(y)-cos(z) [/mm] ein, um C(y,z) zu berechnen.

Ich erhalte [mm] \bruch{\partial}{\partial y}(-\bruch{1}{3}x^3+C(y,z))=-zcos(y)-cos(z) [/mm] und es ergibt sich somit [mm] \bruch{\partial}{\partial y}C(y,z)=-zcos(y)-cos(z) [/mm]

[mm] \Rightarrow C(y,z)=-\integral{zcos(y)-cos(z) dy+D(z)}=-zsin(y)-ycos(z)+D(z) [/mm]

[mm] \Rightarrow \varphi(x,y,z)=-\bruch{1}{3}x^3-zsin(y)-ycos(z)+D(z) [/mm]

Wobei D(z) eine konstante bzgl. y ist.


Im letzten Schritt möchte ich nun D(z) berechnen, indem ich [mm] \varphi(x,y,z)=-\bruch{1}{3}x^3-zsin(y)-ycos(z)+D(z) [/mm] in (3), also  [mm] \bruch{\partial \varphi}{\partial z}=-sin(y)+ysin(z) [/mm] einsetze.

Ich erhalte [mm] \bruch{\partial}{\partial z}(-\bruch{1}{3}x^3-zsin(y)-ycos(z)+D(z))=-sin(y)+ysin(z) [/mm]

[mm] \Rightarrow{-sin(y)+ysin(z)+D'(z)=-sin(y)+ysin(z)} [/mm]

D'(z)=0 bzw. [mm] D'(z)=C_0 [/mm]

und es ergibt sich somit das Potential [mm] \varphi(x,y,z)=-\bruch{1}{3}x^3-zsin(y)-ycos(z)+C_0 [/mm]


Meine Frage besteht nun darin zu fragen, ob es prinzipiell reicht zu sagen, dass Jede Funktion f ein Potential besitzt, für die folgendes gilt: [mm] \bruch{\partial}{\partial z}f(x,y,z)=0 [/mm] und  [mm] \bruch{\partial}{\partial y}f(x,y,z)=0, [/mm] denn für alle anderen Fälle wäre das Vektorfeld ja nicht Wirbelfrei.

Es geht somit z.B. auf für [mm] x^k [/mm] mit k [mm] \in \IR [/mm]


Hoffe ihr könnt mir helfen. mfg dodo4ever

        
Bezug
Potentiale: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 So 01.01.2012
Autor: leduart

Hallo
Du hast recht, allsrdings solltest du für f(x,y,z)=f)x) schreiben mit F(x) als Stammfunktion und nicht nur [mm] x^r [/mm]
gruss leduart

Bezug
                
Bezug
Potentiale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:08 So 01.01.2012
Autor: dodo4ever

Hallo leduart und danke die für die Hilfe...

Was meinst du mit nicht nur [mm] x^r??? [/mm] Trigonometrische Funktionen wollte ich jetzt ausschließen. Kosinus und Sinus sind ja abwechselnd konvex und konkav.

Für welche Funktionen gibt es denn noch Potentiale??? Bzw. Wie kann ich die frage allgemein beantworten ohne gleich ne ganze Seite voller Funktionen voll zu schreiben???

Wie gesagt, danke noch einmal. MfG dodo4ever

Bezug
                        
Bezug
Potentiale: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 So 01.01.2012
Autor: MathePower

Hallo dodo4ever,

> Hallo leduart und danke die für die Hilfe...
>  
> Was meinst du mit nicht nur [mm]x^r???[/mm] Trigonometrische
> Funktionen wollte ich jetzt ausschließen. Kosinus und
> Sinus sind ja abwechselnd konvex und konkav.
>  
> Für welche Funktionen gibt es denn noch Potentiale??? Bzw.
> Wie kann ich die frage allgemein beantworten ohne gleich ne
> ganze Seite voller Funktionen voll zu schreiben???
>  


Das gegebene  Feld muss auf einer einfach zusammenhängenden Menge
stetig differenzierbar sein. Damit auch f.


> Wie gesagt, danke noch einmal. MfG dodo4ever


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de