www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Potenzen
Potenzen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzen: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:07 Do 02.08.2012
Autor: JohnLH

Aufgabe
geg: [mm] A=\pmat{ 3 & -5 \\ 2 & -3 } [/mm]

ges: [mm] A^{99} [/mm] und  [mm] (A^{-1})^{99} [/mm]


Eigenwerte:
[mm] T=\pmat{ 3+i & 2 \\ 3-i & 2} [/mm]
D= [mm] \pmat{ i & 0 \\ 0 & -i} [/mm]
[mm] D^{2}= \pmat{ -1 & 0 \\ 0 & 1} [/mm]
[mm] D^{4}= \pmat{ 1 & 0 \\ 0 & 1} [/mm]
[mm] D^{99}= \pmat{ -i & 0 \\ 0 & -i} [/mm]

Jetzt versuche ich [mm] T^{-1} [/mm] zu berechnen, um [mm] A^{99}=TD^{99} T^{-1} [/mm] zu kriegen, aber ich komme auf komische Rechnungen. Ist diese die einzige Art und Weise, dieses zu berechnen? Danke!

Auch würde ich gerne wissen, wie ich [mm] (A^{-1})^{99} [/mm] kriege. Ist es gleich wie [mm] A^{99}? [/mm]

        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:28 Do 02.08.2012
Autor: schachuzipus

Hallo JohnLH,


> geg: [mm]A=\pmat{ 3 & -5 \\ 2 & -3 }[/mm]
>  
> ges: [mm]A^{99}[/mm] und  [mm](A^{-1})^{99}[/mm]
>  
> Eigenwerte:
>  [mm]T=\pmat{ 3+i & 2 \\ 3-i & 2}[/mm]

??? Wie? Eigenwerte? Da steht ne komische Matrix, ist die vom Himmel gefallen? Poste doch bitte immer die Rechnungen oder sollen wir alles selber rechnen?

Die Eigenvektoren zu den Eigenwerten [mm]i[/mm] und [mm]-i[/mm] musst du als Spalten in die transformierende Matrix stopfen.

Ich habe nur den für [mm]i[/mm] überschlagsmäßig nachgerechnet, den scheinst du in die 1.Zeile gestopft zu haben ...

>  D= [mm]\pmat{ i & 0 \\ 0 & -i}[/mm] [ok]
>  
> [mm]D^{2}= \pmat{ -1 & 0 \\ 0 & 1}[/mm] [haee]

[mm](-i)^2=(-1)^2\cdot{}i^2=-1[/mm]

>  [mm]D^{4}= \pmat{ 1 & 0 \\ 0 & 1}[/mm]
>  
> [mm]D^{99}= \pmat{ -i & 0 \\ 0 & -i}[/mm] [notok]
>  
> Jetzt versuche ich [mm]T^{-1}[/mm] zu berechnen, um [mm]A^{99}=TD^{99} T^{-1}[/mm]  
> zu kriegen, aber ich komme auf komische Rechnungen.

Wieso? Zeig' mal her, die Rechnung, beachte die Hinweise zu [mm]T[/mm]

> diese die einzige Art und Weise, dieses zu berechnen?

Kannst es ja "zu Fuß" machen ;-)

> Danke!
>  
> Auch würde ich gerne wissen, wie ich [mm](A^{-1})^{99}[/mm] kriege.
> Ist es gleich wie [mm]A^{99}?[/mm]  

Fast, bedenke, dass mit [mm]A=TDT^{-1}[/mm] dann [mm]A^{-1}=\left[TDT^{-1}\right]^{-1}=...[/mm] ist.

Dann analog wie für [mm]A^{99}[/mm]

Gruß

schachuzipus


Bezug
        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Do 02.08.2012
Autor: fred97

Das char. Polynom von A lautet:


[mm] \lambda^2+1 [/mm]

Nach Cayley- Hamilton ist  [mm] A^2=-I [/mm]

Hilft das ?

FREd

Bezug
        
Bezug
Potenzen: erster kleiner Schritt ...
Status: (Antwort) fertig Status 
Datum: 23:01 Do 02.08.2012
Autor: Al-Chwarizmi

[mm] A^{99} [/mm]  erscheint etwas abschreckend, wie ein hoher Berg,
der zu besteigen wäre.

Warum versuchst du nicht einmal zuerst einen kleinen
Schritt, indem du mal anstatt 99 einen kleinen, handlichen
Exponenten nimmst. Mein Vorschlag: Exponent 2 .

Das Ergebnis dieser einfachen Rechnung macht die
anscheinend schwierige Bergtour zu einem Spaziergang,
den man vor dem Frühstück unter die Füße nehmen kann ...

LG   Al-Chw.  


Bezug
                
Bezug
Potenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:08 Do 02.08.2012
Autor: fred97


> [mm]A^{99}[/mm]  erscheint etwas abschreckend, wie ein hoher Berg,
>  der zu besteigen wäre.
>  
> Warum versuchst du nicht einmal zuerst einen kleinen
>  Schritt, indem du mal anstatt 99 einen kleinen,
> handlichen
>  Exponenten nimmst. Mein Vorschlag: Exponent 2 .

Hallo Al,


Donnerwetter, da hatten wir die gleiche sensationelle Idee


https://matheraum.de/read?i=905739

Gruß FRED

>  
> Das Ergebnis dieser einfachen Rechnung macht die
>  anscheinend schwierige Bergtour zu einem Spaziergang,
>  den man vor dem Frühstück unter die Füße nehmen kann
> ...
>  
> LG   Al-Chw.  
>  


Bezug
                        
Bezug
Potenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:22 Do 02.08.2012
Autor: Al-Chwarizmi


> Donnerwetter, da hatten wir die gleiche sensationelle Idee

... aber im Gegensatz zu dir und zum Fragesteller wäre mir
gar nicht eingefallen, das charakteristische Polynom und
Cayley-Hamilton zu bemühen

Hamilton - war jetzt das der Hotelbesitzer oder der dänische Kerl
in einem Drama von Schäkspier ? ...   ;-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de