www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Potenzfunktion 3. Grades
Potenzfunktion 3. Grades < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzfunktion 3. Grades: Problem bei Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:11 Sa 16.09.2006
Autor: mathe-noobie

Aufgabe
Wie ist es zu erklären,dass eine Potenzfunktion 3: Grades an maximal zwei Stellen die gleiche Steigung hat?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
hallo,verstehe diese Aufgabe irgendwie nicht richtig ,wäre super wenn mir da jmd helfen könnte.
Schonmal Danke


        
Bezug
Potenzfunktion 3. Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Sa 16.09.2006
Autor: mathmetzsch

Hallo,

was verstehst du denn unter einer Potenzfunktion dritten Grades. Für mich ist das eine Funktion derart: [mm] f(x)=a*x^{3}, a\in\IR. [/mm] Hier ist klar, warum eine solche Funktion an max. zwei Stellen dieselbe Steigung. Sie ist punktsymmetrisch zum Koordinatenursprung. In den Intervallen [mm] [0,\infty) [/mm] und [mm] (-\infty, [/mm] 0] steigt bzw. fällt sie streng monoton. Damit ist die Sache klar. Wie das Polynomen dritten Grades, also bei Funktionen [mm] f(x)=a*x^{3}+b*x^{2}+c*x+d, [/mm] aussieht, ist sicherlich etwas komplizierter.

Viele Grüße
Daniel

Bezug
                
Bezug
Potenzfunktion 3. Grades: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:40 Sa 16.09.2006
Autor: mathe-noobie

Hallo!
Danke ja jetzt wo ichs lese ist es mir auch klar geworden. Es kann sich aber nur um  $ [mm] f(x)=a\cdot{}x^{2}, a\in\IR. [/mm] $ handeln das andere hatten wir bisher noch nicht behandelt.
Also nochmal danke und n schönes restwochenende ;-)

Bezug
        
Bezug
Potenzfunktion 3. Grades: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:42 Sa 16.09.2006
Autor: Palin

Am besten bildest du die Ableitung (Was ja gleich der Steigung in Punkt x ist), nun must du nur noch zeigen das die Gleichung für unterschiedliche x maximal 2 mal den Gleichen Wert annehmen kann.

Am besten findes du dan das minimum der Funktion und zeigst das sie rechts vom Minimum streng monoton Wachsent ist und links streng monoton fallend ist (Solte über die 3. Ableitung gelingen).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de