www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Potenzreihe
Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:14 Mi 19.08.2009
Autor: domerich

Aufgabe
bestimme das Konvergenzintervvall der gg. Reihe. Untersuche auch auf Konvergenz für |x|=r

1+ [mm] \bruch{2x}{3^2\wurzel{3}}+\bruch{4x^2}{5^2\wurzel{3^2}}+\bruch{8x^3}{7^2 \wurzel{3^3}} [/mm]

habe versucht es als Potenzreihe umzuschreiben:

[mm] \sum\limits_{n=0}^{\infty}\frac{2^n*x^n}{(2n+1)^{2}\cdot{}\wurzel{3^n}} [/mm] (bin stolz auf mein Summenzeichen :) )
stimmt das soweit?

nun möchte ich den konvergenz radius mit dem quotientenkriterium berechnen
dabei ist mein an aber falls es stimmt:

[mm] \limes_{n\rightarrow\infty} \bruch{(2n+3)^{n+2}* \wurzel{3}}{(2n+1)^{n+1}} [/mm]
was ich umgeformt habe auf [mm] \limes_{n\rightarrow\infty} (\bruch{(2n+3)}{(2n+1)})^n [/mm] * [mm] \bruch{(2n+3)^{2}* \wurzel{3}}{(2n+1)} [/mm]

wie mache ich denn hier weiter?

        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 Mi 19.08.2009
Autor: fred97


> bestimme das Konvergenzintervvall der gg. Reihe. Untersuche
> auch auf Konvergenz für |x|=r
>  
> 1+
> [mm]\bruch{2x}{3^2\wurzel{3}}+\bruch{4x^2}{5^2\wurzel{3^2}}+\bruch{8x^3}{7^2\wurzel{3^3}}[/mm]
>  habe versucht es als Potenzreihe umzuschreiben:
>  
> [mm]\sum\limits_{n=0}^{\infty}\frac{2^n*x^n}{(2n+1)^{n+1}\cdot{}\Wurzel{3^n}}[/mm]
>  


Das stimmt nicht. Besser:

[mm]\sum\limits_{n=0}^{\infty}\frac{2^n*x^n}{(2n+1)^{2}\cdot{}\wurzel{3^n}}[/mm]


FRED

Bezug
                
Bezug
Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Mi 19.08.2009
Autor: domerich

dumme fehler da ^^

also ich bin ein stück weiter:

[mm] \limes_{n\rightarrow\infty}(\bruch{(2n+3)}{(2n+1)})^{2}\cdot{} \wurzel{3} [/mm]

wenn ich das quadrat ausrechne und  den limes mache komme ich aber auf [mm] \wurzel{3} \bruch{4}{4} [/mm]
leider ist das nicht der richtige konvergenz radius :(

Bezug
                        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Mi 19.08.2009
Autor: angela.h.b.

  
> [mm]\limes_{n\rightarrow\infty}(\bruch{(2n+3)}{(2n+1)})^{2}\cdot{} \wurzel{3}[/mm]
>  
> wenn ich das quadrat ausrechne und  den limes mache komme
> ich aber auf [mm]\wurzel{3} \bruch{4}{4}[/mm]
>  leider ist das nicht
> der richtige konvergenz radius :(

Hallo,

da hast Du wohl die [mm] 2^n [/mm] völlig ignoriert.

Gruß v. Angela


Bezug
                                
Bezug
Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:47 Mi 19.08.2009
Autor: domerich

ne net die [mm] 2^n [/mm] sondern die 2 :) jetzt stimmts.

aber mir ist mein vorgehen ungeheuer... die [mm] \wurzel{3} [/mm] darf ich einfach vor den limes ziehen und das [mm] \bruch{1}{2} [/mm] auch weil da nix mit n ist.

aber in dem quadratischen term sind ja auch teile oder n drin, wieso darf ich die schamlos eliminieren in dem ich z.b. sage [mm] 4n^2(4-6/n+9/n^{2}) [/mm] ?
und somit [mm] \limes_{n\rightarrow\infty} [/mm] = 4 wenn im nenner steht [mm] 4n^2(4-4/n+1/n^{2})[/mm]

Bezug
                                        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 Mi 19.08.2009
Autor: MathePower

Hallo domerich,

> ne net die [mm]2^n[/mm] sondern die 2 :) jetzt stimmts.
>  
> aber mir ist mein vorgehen ungeheuer... die [mm]\wurzel{3}[/mm] darf
> ich einfach vor den limes ziehen und das [mm]\bruch{1}{2}[/mm] auch
> weil da nix mit n ist.
>  
> aber in dem quadratischen term sind ja auch teile oder n
> drin, wieso darf ich die schamlos eliminieren in dem ich
> z.b. sage [mm]4n^2(4-6/n+9/n^{2})[/mm] ?
>   und somit [mm]\limes_{n\rightarrow\infty}[/mm] = 4 wenn im nenner
> steht [mm]4n^2(4-4/n+1/n^{2})[/mm]  


Das ist die übliche Vorgehensweise, um den Grenzwert von

[mm]\limes_{n\rightarrow\infty}\left(\bruch{2n+3}{2n+1}\right)^{2}[/mm]

zu ermitteln.

Zunächst klammert man aus Zähler und Nenner
die höchste Potenz von n aus und kürzt gegebenfalls.
Dann läß man [mm]n \to \infty[/mm] laufen.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de