www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Potenzreihen
Potenzreihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:36 So 24.06.2007
Autor: kiriS

Aufgabe
Untersuche die Potenzreihen auf Konvergenz

[mm] \summe_{i=n}^{\infty} n^{\bruch{ln n}{n}} \cdot x^{n} [/mm]

Hallo Zusammen,

leider weiß ich bei der angegebenen Potenzreihe nicht, wie ich vorgehen muss. Ich hab nicht mal einen Ansatz.


Könnte mir da bitte jemand weiter helfen.

Gruß, Kira

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:47 Mo 25.06.2007
Autor: Hund

Hallo,

du kannst mit dem Wurzelkriterium den Konvergenzradius bestimmen.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
                
Bezug
Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 Mo 25.06.2007
Autor: kiriS

Hallo,

bei Anwendung des Wurzelkriteriums hab ich folgendes stehen:


[mm] \limes_{n\rightarrow\infty}sup \wurzel[n]{n^{\bruch{ln n}{n}} \cdot x^{n}} [/mm] < 1

|x| [mm] \cdot \limes_{n\rightarrow\infty}sup \wurzel[n]{n^{\bruch{ln n}{n}}} [/mm] < 1

Ab da komm ich leider nicht weiter :-/

Könntest du mir da bitte helfen?

Danke im voraus.

Bezug
                        
Bezug
Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 Mo 25.06.2007
Autor: Braunstein

Manno, jetzt hab ich ein paar Zettel voll geschrieben, und bin mir immer noch nicht sicher. Deshalb sag ich mal vorsichtig:

Betrachte den Exponenten, dieser geht gegen 0 [mm] (\bruch{ln(n)}{n}). [/mm] Dh: Du hast dann [mm] \limes_{n\rightarrow\infty}\infty^{0} [/mm] dastehen. Nun kannst du l'Hopsital anwenden und versuchen den Grenzwert zu bestimmen. Du nimmst hier die [mm] \infty^{0}-Regel. [/mm]

Hoffentlich bringt dich das auf eine Spur. Ich bleib mal dran. Vielleicht kommt mir ja noch die Erleuchtung.

Gruß, h.



PS: Mir is grad das Quotientenkriterium eingefallen. Versuch's mal damit.

Bezug
                        
Bezug
Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 Mo 25.06.2007
Autor: felixf

Hallo kiriS!

> |x| [mm]\cdot \limes_{n\rightarrow\infty}sup \wurzel[n]{n^{\bruch{ln n}{n}}}[/mm]
> < 1

Es ist doch [mm] $\sqrt[n]{n^{\frac{\ln n}{n}}} [/mm] = [mm] (n^{\frac{\ln n}{n}})^{1/n} [/mm] = [mm] n^{\frac{\ln n}{n^2}} [/mm] = [mm] \exp\Bigl( \frac{\ln n}{n^2} \cdot \ln [/mm] n [mm] \Bigr) [/mm] = [mm] \exp\Bigl( \Bigl( \frac{\ln n}{n} \Bigr)^2 \Bigr)$. [/mm]

[edit: Tippfehler korrigiert]

So. [mm] $\exp$ [/mm] und Quadrieren ist stetig, und [mm] $\lim_{n\to\infty} \frac{\ln n}{n} [/mm] = 0$ (das folgt mit l'Hopital). Also?

LG Felix


Bezug
                                
Bezug
Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 Mo 25.06.2007
Autor: clover84

Hallo felix,

ich hätte da bezüglich deiner Antwort eine Frage, da ich einige Zeichen nicht so recht verstehe. Es geht um die Zeile "Es ist doch ..... =exp....."

Meine Verständnisschwierigkeit geht ab exp los. Könntest du bitte erklären, was du da geschrieben hast? Ich würde gern die Aufgabe verstehen.


Vielen lieben Dank im voraus.

Gruß

Bezug
                                        
Bezug
Potenzreihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:03 Mo 25.06.2007
Autor: Somebody


> Hallo felix,
>  
> ich hätte da bezüglich deiner Antwort eine Frage, da ich
> einige Zeichen nicht so recht verstehe. Es geht um die
> Zeile "Es ist doch ..... =exp....."

Man könnte es vielleicht auch so formulieren
[mm]\lim_{n\rightarrow \infty}\sqrt[n]{n^{\frac{\ln(n)}{n}}} = \lim_{n\rightarrow \infty}\sqrt[n]{e^{\frac{\ln(n)}{n}\cdot \ln(n)}} = \lim_{n\rightarrow \infty} e^{\frac{\ln(n)}{n}\cdot \frac{\ln(n)}{n}} = e^{(\lim_{n\rightarrow \infty}\frac{\ln(n)}{n}) \cdot (\lim_{n\rightarrow \infty}\frac{\ln(n)}{n})} = e^{0\cdot 0} = e^0 = 1[/mm]

Dabei wird benutzt, dass [mm]\lim_{n\rightarrow \infty}\frac{\ln(n)}{n} = 0[/mm] ist ("der [mm]\ln(n)[/mm] wächst langsamer als jede positive Potenz von [mm]n[/mm]"), dass die Exponentialfunktion stetig ist (daher kann man den Limes der Exponentialfunktion durch die Exponentialfunktion angewandt auf den Limes vertauschen) und dass [mm]n^x = e^{\ln(n)\cdot x}[/mm] ist.

> Meine Verständnisschwierigkeit geht ab exp los. Könntest du
> bitte erklären, was du da geschrieben hast? Ich würde gern
> die Aufgabe verstehen.
>  
>
> Vielen lieben Dank im voraus.
>  
> Gruß


Bezug
                                        
Bezug
Potenzreihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:44 Mo 25.06.2007
Autor: felixf

Hallo

> ich hätte da bezüglich deiner Antwort eine Frage, da ich
> einige Zeichen nicht so recht verstehe. Es geht um die
> Zeile "Es ist doch ..... =exp....."

Was zwei kleine ( doch schon bewirken koennen :)

So, jetzt solltest du es lesen koennen.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de