www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Potenzreihen
Potenzreihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:33 Sa 03.01.2009
Autor: Sachsen-Junge

Aufgabe
Berechne den Konvergenzradius der folgenden Potenzreihe:

Hier sind meine Ausführungen:
[mm] \summe_{n=0}^{\infty}\frac{x^{2n+1}}{4^n}=\summe_{n=0}^{\infty}\frac{1}{4^n} \* x^{2n+1} [/mm]

Eine Potenzreihe hat die Form
[mm] \summe_{n=0}^{\infty}a_n \*z^n [/mm]

In der Aufgabe ist das [mm] a_n [/mm] = [mm] \frac{1}{4^n} [/mm] und [mm] z^n= x^{2n+1} [/mm]

Bei der Rechnung muss ich ja nur das [mm] a_n [/mm] betrachten....
Ich benutze das Quotientenkriterium.

[mm] q=\limes_{n\rightarrow\infty}\frac{a_{n+1}}{a_n}=\limes_{n\rightarrow\infty}\frac{4^n}{4^{n+1}}=\limes_{n\rightarrow\infty}\frac{4^n}{4^{n}} \* \frac{1}{4} [/mm]    
Ab hier stimmt doch irgendetwas nicht..
Ich würde dann auf einen Radius von 4 kommen..

Ich wäre für zämtliche Kritik dankbar.

Liebe Grüße
Sachsen-Junge


        
Bezug
Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:29 Sa 03.01.2009
Autor: angela.h.b.


> Berechne den Konvergenzradius der folgenden Potenzreihe:
>  
> Hier sind meine Ausführungen:
>  
> [mm]\summe_{n=0}^{\infty}\frac{x^{2n+1}}{4^n}=\summe_{n=0}^{\infty}\frac{1}{4^n} \* x^{2n+1}[/mm]
>  
> Eine Potenzreihe hat die Form
> [mm]\summe_{n=0}^{\infty}a_n \*z^n[/mm]

Hallo,

in der Dir vorliegenden Reihe ist es nun so, daß jedes zweite der Folgenglieder =0 ist, denn

[mm] \summe_{n=0}^{\infty}\frac{1}{4^n} \* x^{2n+1}=\frac{1}{4^0} \* x^{1} [/mm] + [mm] 0*x^2 [/mm] + [mm] \frac{1}{4^1} \* x^{3}+0*x^4+ \frac{1}{4^2} \* x^{5}+.... [/mm]

Das macht die direkte Anwendung des Quotientenkriteriums unmöglich, denn jeder zweite der Quotienten [mm] \bruch{a_n}{a_{n+2}} [/mm] ist ja gar nicht definiert.

Wenn Du hier das Quotienenkriterium anwenden möchest, kannst Du Dich wie folgt aus der Affäre ziehen:

[mm] \summe_{n=0}^{\infty}\frac{1}{4^n} \* x^{2n+1}= \summe_{n=0}^{\infty}\frac{x}{4^n} \* x^{2n}. [/mm]

Nun sagst Du [mm] z:=x^2 [/mm] und berechnest den Konvergenzradius R für [mm] \summe_{n=0}^{\infty}\frac{x}{4^n} \*z^n. [/mm]

Du weißt anschließend: für |z|<R konvergiert die Reihe, und daraus ermittelst Du dann, für welche x sie konvergiert.


Ein anderer Weg wäre der über Cauchy-Hadamard:     [mm] R=\frac{1}{\limsup\limits_{n\rightarrow\infty}\left(\sqrt[n]{|a_n|}\right)}. [/mm]

Ein kleines bißchen aufpassen muß man hierbei auch - Du kannst das ja anschließend mal probieren.

Gruß v. Angela



Bezug
                
Bezug
Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Sa 03.01.2009
Autor: Sachsen-Junge

Hallo angela.

danke nochmal das du mir wieder hilfst!!!

Ich habe stehen:

[mm] \sum_{n=0}^{\infty}\frac{1}{4^n} [/mm] * [mm] x^{2n+1}= \sum_{n=0}^{\infty}\frac{x}{4^n} [/mm] * [mm] x^{2n} [/mm]

[mm] q=\lim_{n\rightarrow\infty} \frac{x*4^n}{x *4^{n+1}}=\lim_{n\rightarrow\infty}\frac{x}{x} \*\frac{4^n}{4^{n+1}}= \frac{1}{4} [/mm]

Das heißt, ich bekomme einen Radius von 4 raus, stimmt das??


Bezug
                        
Bezug
Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 Sa 03.01.2009
Autor: angela.h.b.


> Hallo angela.
>  
> danke nochmal das du mir wieder hilfst!!!
>  
> Ich habe stehen:
>
> [mm]\sum_{n=0}^{\infty}\frac{1}{4^n}[/mm] * [mm]x^{2n+1}= \sum_{n=0}^{\infty}\frac{x}{4^n}[/mm]
> * [mm]x^{2n}[/mm]
>  
> [mm]q=\lim_{n\rightarrow\infty} \frac{x*4^n}{x *4^{n+1}}=\lim_{n\rightarrow\infty}\frac{x}{x} \*\frac{4^n}{4^{n+1}}= \frac{1}{4}[/mm]
>  
> Das heißt, ich bekomme einen Radius von 4 raus, stimmt
> das??

Hallo,

naja, das stimmt so halb:

Du weißt jetzt, daß die Reihe für [mm] |x^2|<4 [/mm] konvergiert.

Um den Konvergenzradius zu haben, mußt Du aber wissen, für welche x die Reihe konvergiert.  

Also?

Gruß v. Angela


Bezug
                                
Bezug
Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Sa 03.01.2009
Autor: Sachsen-Junge

Aus der Bedingung:
[mm] |x^2|<4 \Rightarrow [/mm] für x<2

d.h. x<2 ist die Reihe  konvergent ????

Hättest du ein Link wo das mit dem Konvergenzradius erklärt ist?? Wo ein Bsp. vorgerechnet ist, damit isch die Vorgehensweise mal sehe....

LG

Bezug
                                        
Bezug
Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Sa 03.01.2009
Autor: angela.h.b.


> Aus der Bedingung:
> [mm]|x^2|<4 \Rightarrow[/mm] für x<2
>  
> d.h. x<2 ist die Reihe  konvergent ????

Hallo,

ja, genau.


> Hättest du ein Link wo das mit dem Konvergenzradius erklärt
> ist??

Wenn ich was vergesse, gucke ich meist erstmal bei der Wikipedia, aber ich glaube, da gibt's keine Beispiele.

Vom Prinzip her ist das mit dem Konvergenzradius ja auch nicht so schwer, man muß bloß ein bißchen findig sein, wenn die Reihen nicht genau die Gestalt [mm] \summe a_nx^n [/mm] haben, wie eben im vorliegenden Beispiel.

Speziell eine Seite mit vorgerechneten Beispielen weiß ich nicht, aber ich bin mir sicher, daß sich hier im Forum eine Menge gerechneter Konvergenzradiusaufgaben finden.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de