www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Potenzreihen und Konvergenzrad
Potenzreihen und Konvergenzrad < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihen und Konvergenzrad: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:11 So 13.05.2012
Autor: Mathematiklady

Aufgabe
Bestimme die Potenzreihen und den Konvergenzradius von:
(a) f(z) = [mm] \bruch{1-z}{1+z} [/mm] in [mm] \gamma [/mm] =0 und [mm] \gamma=1, [/mm]
(b) f(z) =  [mm] \bruch{cos z-1}{z^{2}} [/mm] in [mm] \gamma [/mm] =0

Hallo,

also ich habe momentan meine schwierigkeiten mit solchen Aufgaben, könnt ihr mir vielleicht ein paar tipps geben, wie ich am besten vorgehen sollte.

Danke schon mal.

        
Bezug
Potenzreihen und Konvergenzrad: Antwort
Status: (Antwort) fertig Status 
Datum: 08:29 Mo 14.05.2012
Autor: Diophant

Hallo,

> Bestimme die Potenzreihen und den Konvergenzradius von:
> (a) f(z) = [mm]\bruch{1-z}{1+z}[/mm] in [mm]\gamma[/mm] =0 und [mm]\gamma=1,[/mm]
> (b) f(z) = [mm]\bruch{cos z-1}{z^{2}}[/mm] in [mm]\gamma[/mm] =0
> Hallo,
>
> also ich habe momentan meine schwierigkeiten mit solchen
> Aufgaben, könnt ihr mir vielleicht ein paar tipps geben,
> wie ich am besten vorgehen sollte.

worin bestehen denn deine Schwierigkeiten? Das solltest du in jedem Fall näher ausführen!

Fange doch mal mit Aufgabe b) an. Die Potenzreihe der komplexen Kosinusfunktion kennst du? Was passiert mit dieser Reihe, wenn man

- 1 subtrahiert
- durch [mm] z^2 [/mm] dividiert

?

Jetzt davon noch den Konvergenzradius 'ausrechnen' (kennen solltest du ihn bereits!) und du bist hier fertig.

Bei Aufgabe a) musst du den Funktionsterm zusätzlich zuerst noch in eine Potenzreihe entwickeln, ist dir da vielleiocht etwas unklar dabei?


Gruß, Diophant

Bezug
                
Bezug
Potenzreihen und Konvergenzrad: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:28 Mo 14.05.2012
Autor: Mathematiklady

Ok. Wenn ich dich richtig  verstanden habe, dann müsste diie Potenzreihe von b so lauten :

[mm] \summe_{n=0}^{\infty}=\bruch{-1^{n}*z^{n}}{(2n)!}-\bruch{(2n)!}{(2n)!*z^{2}} [/mm]
[mm] =\summe_{n=0}^{\infty}=\bruch{-1^{n}*z^{n}}{(2n)!}-\bruch{1}{z^{2}} [/mm]

Bezug
                        
Bezug
Potenzreihen und Konvergenzrad: Antwort
Status: (Antwort) fertig Status 
Datum: 10:39 Mo 14.05.2012
Autor: schachuzipus

Hallo Mathelady,


> Ok. Wenn ich dich richtig  verstanden habe, dann müsste
> diie Potenzreihe von b so lauten :
>  
> [mm]\summe_{n=0}^{\infty}=\bruch{-1^{n}*z^{n}}{(2n)!}-\bruch{(2n)!}{(2n)!*z^{2}}[/mm]
>  
> [mm]=\summe_{n=0}^{\infty}=\bruch{-1^{n}*z^{n}}{(2n)!}-\bruch{1}{z^{2}}[/mm]
>  

Es ist [mm]\cos(z)=\sum\limits_{n=0}^{\infty}(-1)^n\cdot{}\frac{z^{2n}}{(2n)!}=1+\sum\limits_{n=1}^{\infty}(-1)^n\cdot{}\frac{z^{2n}}{(2n)!}[/mm]

Also [mm]\cos(z)-1=\sum\limits_{n=1}^{\infty}(-1)^n\cdot{}\frac{z^{2n}}{(2n)!}[/mm]

Damit [mm]\frac{\cos(z)-1}{z^2}=\frac{1}{z^2}\cdot{}\sum\limits_{n=1}^{\infty}(-1)^n\cdot{}\frac{z^{2n}}{(2n)!}=\sum\limits_{n=1}^{\infty}(-1)^n\cdot{}\frac{z^{2n-2}}{(2n)!}=\sum\limits_{n=1}^{\infty}(-1)^n\cdot{}\frac{\left(z^2\right)^{n-1}}{(2n)!}[/mm]

[mm]=\sum\limits_{n=0}^{\infty}(-1)^{n+1}\cdot{}\frac{\left(z^2\right)^n}{(2n+2)!}[/mm]

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de