Potenzreihenentw. nicht mgl.? < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Warum kann von der Funktion
[mm] f(z):\{z\in\IC:|z|<1\}\to\IC:f(z) [/mm] = [mm] \begin{cases} \exp(-\bruch{1}{z^{2}}), & \mbox{für } z\not= 0 \\ 0, & \mbox{für } z = 0 \end{cases}
[/mm]
keine Potenzreihenentwicklung um den Punkt [mm] z_{0}=0 [/mm] gemacht werden? |
Hallo!
Ich weiß bei obiger Aufgabenstellung einfach nicht, was ich dazu sagen soll. Nach meinem Wissen kann ich doch eigentlich immer eine Potenzreihenentwicklung machen, egal wie die Funktion beschaffen ist? Oder ist das nicht der Fall? Was für Bedingungen muss die Funktion erfüllen?
Vielen Dank für Eure Hilfe!
Grüße, Stefan.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:00 Do 07.05.2009 | Autor: | felixf |
Hallo Stefan!
> Warum kann von der Funktion
>
> [mm]f(z):\{z\in\IC:|z|<1\}\to\IC:f(z)[/mm] = [mm]\begin{cases} \exp(-\bruch{1}{z^{2}}), & \mbox{für } z\not= 0 \\ 0, & \mbox{für } z = 0 \end{cases}[/mm]
>
> keine Potenzreihenentwicklung um den Punkt [mm]z_{0}=0[/mm] gemacht
> werden?
> Hallo!
>
> Ich weiß bei obiger Aufgabenstellung einfach nicht, was ich
> dazu sagen soll. Nach meinem Wissen kann ich doch
> eigentlich immer eine Potenzreihenentwicklung machen, egal
> wie die Funktion beschaffen ist? Oder ist das nicht der
> Fall? Was für Bedingungen muss die Funktion erfüllen?
Eine Potenzreihenentwicklung kannst du immer machen (solang die Funktion unendlich oft differenzierbar ist in einer Umgebung um den Punkt), die Frage ist halt, was diese Reihe mit der Funktion zu tun hat.
Hier sollst du zeigen, dass man die Funktion nicht durch eine Reihe darstellen kann. Das kann man auf verschiedene Arten und Weisen tun, am einfachsten geht es mit dem Identitaetssatz...
(Ein Tipp: die Funktion ist nichtmals stetig in 0.)
LG Felix
|
|
|
|
|
Hallo und danke für deine Antwort, Felix!
Dass die Funktion in 0 nicht stetig ist, dachte ich mir schon fast, aber ich bin nicht drauf gekommen, weil wenn ich kleine z's einsetze wird doch der Bruch groß und nimmt damit insgesamt [mm] -\infty [/mm] als Wert an, und [mm] e^{-\infty} [/mm] = 0...
Ach so, aber ich merke gerade dass in den komplexen Zahlen [mm] z^{2} [/mm] ja nicht unbedingt einen positiven Wert annehmen muss. D.h. das von einer Näherung von der imaginären Achse gegen 0 die Funktion gegen unendlich geht?
Wenn ich nun zunächst eine Potenzreihe von der Funktion f(x) erstelle, wird die ja schlicht und ergreifend "0" werden, weil für x = 0 der Funktionswert f(0) = 0 ist, und analog die Ableitungen an dieser Stelle immer die Nullfunktionen werden. Ist das richtig?
Ich habe den Identitätssatz für holomorphe Funktionen gefunden:
"Seien f und g holomorphe Funktionen auf einer Umgebung U von [mm] z_{0} [/mm] und sei [mm] z_{0} [/mm] ein Häufungspunkt der Koinzidenzmenge [mm] \{z\in U: f(z) = g(z)\}, [/mm] dann existiert eine Umgebung V von [mm] z_{0} [/mm] mit f(z) = g(z) auf ganz V."
Aber meiner Meinung nach kann ich mit diesem Satz doch hier gar nichts zeigen, weil es ja keine Äquivalenz ist, sondern nur eine Implikation?
Ich habe es auch mal überprüft, aber [mm] e^{...} [/mm] kann doch gar nicht 0 werden? Also gebe es doch sowieso keine Koinzidenzmenge der Funktion f und der Nullfunktion = Potenzreihe, welche Häufungspunkte hätte, oder?
Bitte gebt mir nochmal einen kleinen Anstoß!
Vielen Dank für eure Hilfe und viele Grüße,
Stefan
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:55 Mo 11.05.2009 | Autor: | fred97 |
Angenommen in einer Umgebung von 0 gilt:
$f(z) = [mm] \summe_{n=0}^{\infty}a_nz^n$
[/mm]
Dann ist f in 0 komplex differenzierbar also dort auch stetig.
Wähle [mm] (z_n) [/mm] so, dass [mm] z_n^2 [/mm] = [mm] \bruch{1}{2n \pi i}. [/mm] dann:
[mm] \limes_{n\rightarrow\infty}z_n [/mm] = 0, aber [mm] f(z_n) [/mm] = 1 für jedes n. Widerspruch
Fred
|
|
|
|
|
Hallo!
Danke fred für deine Antwort! D.h. das Grundprinzip ist: Wenn ich f in einer Potenzreihe um [mm] z_{0} [/mm] = 0 darstellen könnte, wäre f komplex differenzierbar und stetig, und indem wir dies mit dem Folgenkriterium und geeigneter Folge widerlegen, haben wir gezeigt, dass keine passende Potenzreihenentwicklung gibt?
Ist es so, dass wenn eine Potenzreihe einer Funktion f in einer Umgebung U um [mm] z_{0} [/mm] existiert, dass die Funktion dann dort auch komplex differenzierbar und stetig ist?
Vielen Dank für deine Hilfe, Stefan.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:19 Mo 11.05.2009 | Autor: | fred97 |
> Hallo!
>
> Danke fred für deine Antwort! D.h. das Grundprinzip ist:
> Wenn ich f in einer Potenzreihe um [mm]z_{0}[/mm] = 0 darstellen
> könnte, wäre f komplex differenzierbar und stetig, und
> indem wir dies mit dem Folgenkriterium und geeigneter Folge
> widerlegen, haben wir gezeigt, dass keine passende
> Potenzreihenentwicklung gibt?
Ja
>
> Ist es so, dass wenn eine Potenzreihe einer Funktion f in
> einer Umgebung U um [mm]z_{0}[/mm] existiert, dass die Funktion dann
> dort auch komplex differenzierbar und stetig ist?
Wenn eine Funktion in einer Umgebung U von [mm] z_0 [/mm] durch eine Potenzreihe darstellbar ist, so ist dies Funktion auf U holomorph, also auch stetig auf U
FRED
>
> Vielen Dank für deine Hilfe, Stefan.
|
|
|
|
|
Ok, vielen Dank fred!
Grüße, Stefan.
|
|
|
|