www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Potenzreihenentwicklung
Potenzreihenentwicklung < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihenentwicklung: korrektur
Status: (Frage) beantwortet Status 
Datum: 22:06 Mo 21.06.2010
Autor: Kinghenni

Aufgabe
Es sei f: [mm] \IC\{1}\to\IC, f(z)=\bruch{1}{1-z}. [/mm] Entwickeln Sie f in eine Potenzreihe um [mm] z_0 [/mm] und bestimmen Sie die jeweiligen Konvergenzradius für [mm] z_0 \in [/mm] {0,2,i,-i,-2}

also für [mm] z_0=0 [/mm] ist es klar, wegen geometrische Reihe, doch hab ich gefunden das auch gilt
[mm] z_0=2 [/mm]
[mm] \bruch{1}{1-z-2}=\bruch{1}{1-(z-2)}=\summe_{n=0}^{\infty}(z-2)^n [/mm]
damit gilt ja für alle zo
[mm] \summe_{n=0}^{\infty}(z-z_0)^n [/mm] , alle mit KR = 1
aber das wäre doch zu simpel?

        
Bezug
Potenzreihenentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Mo 21.06.2010
Autor: steppenhahn

Hallo,

> Es sei f: [mm]\IC\{1}\to\IC, f(z)=\bruch{1}{1-z}.[/mm] Entwickeln
> Sie f in eine Potenzreihe um [mm]z_0[/mm] und bestimmen Sie die
> jeweiligen Konvergenzradius für [mm]z_0 \in[/mm] {0,2,i,-i,-2}
>  also für [mm]z_0=0[/mm] ist es klar, wegen geometrische Reihe,
> doch hab ich gefunden das auch gilt
>  [mm]z_0=2[/mm]
>  
> [mm]\bruch{1}{1-z-2}=\bruch{1}{1-\red{(z-2)}}=\summe_{n=0}^{\infty}(z-2)^n[/mm]

Das Rotmarkierte ist falsch umgeformt. Aber was willst du überhaupt mit dieser Gleichung?
Es ist doch

$f(z) = [mm] \frac{1}{1-z} \not= \frac{1}{1-z-2}$ [/mm]

?
Du musst Folgendes machen: Für [mm] $z_{0}\not= [/mm] 1$:

$f(z) = [mm] \frac{1}{1-z} [/mm] = [mm] \frac{1}{1-z+z_{0}-z_{0}} [/mm] = [mm] \frac{1}{1-z_{0}-(z-z_{0})} [/mm] = [mm] \frac{1}{1-z_{0}}*\frac{1}{1-\Big[\frac{1}{1-z_{0}}*(z-z_{0})\Big]} [/mm] = ...$

Grüße,
Stefan

Bezug
                
Bezug
Potenzreihenentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:36 Mo 21.06.2010
Autor: Kinghenni

hi, ja war zu voreilig, ich meinte türlich
> [mm]\bruch{1}{1-z-2}=\bruch{1}{1-\red{(z+2)}}=\summe_{n=0}^{\infty}(z+2)^n[/mm]
>  
> Das Rotmarkierte ist falsch umgeformt. Aber was willst du
> überhaupt mit dieser Gleichung?

naja bis jetzt war der entwicklungspunkt immer 0, deshalb dachte ich, es würde so funktionieren

>  Es ist doch
>  
> [mm]f(z) = \frac{1}{1-z} \not= \frac{1}{1-z-2}[/mm]
>  
> ?
>  Du musst Folgendes machen: Für [mm]z_{0}\not= 1[/mm]:
>  
> [mm]f(z) = \frac{1}{1-z} = \frac{1}{1-z+z_{0}-z_{0}} = \frac{1}{1-z_{0}-(z-z_{0})} = \frac{1}{1-z_{0}}*\frac{1}{1-\Big[\frac{1}{1-z_{0}}*(z-z_{0})\Big]} = ...[/mm]

um jetzt mal weiter zu machen
[mm] ...=\summe_{n=0}^{\infty}(z_0)^n*\summe_{n=0}^{\infty}(\frac{1}{1-z_{0}}*(z-z_{0})\))^n [/mm]
[mm] =\summe_{n=0}^{\infty}(z_0)^n*(\frac{1}{1-z_{0}}*(z-z_{0})\))^n [/mm]
[mm] \summe_{n=0}^{\infty}(\frac{z_0}{1-z_{0}})^n*(z-z_{0})\))^n [/mm]
aber vll war das jetzt auch zu schnell gemacht

Bezug
                        
Bezug
Potenzreihenentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:47 Mo 21.06.2010
Autor: steppenhahn

Hallo,

> hi, ja war zu voreilig, ich meinte türlich
>  >

> [mm]\bruch{1}{1-z-2}=\bruch{1}{1-\red{(z+2)}}=\summe_{n=0}^{\infty}(z+2)^n[/mm]
>  >  
> > Das Rotmarkierte ist falsch umgeformt. Aber was willst du
> > überhaupt mit dieser Gleichung?
>  naja bis jetzt war der entwicklungspunkt immer 0, deshalb
> dachte ich, es würde so funktionieren

???
Aber in der Aufgabenstellung geht es doch auch um andere Entwicklungspunkte als 0.
Und du willst ja f(z) in eine Potenzreihe entwickeln und nicht [mm] \bruch{1}{1-z-2}... [/mm]

> > [mm]f(z) = \frac{1}{1-z} = \frac{1}{1-z+z_{0}-z_{0}} = \frac{1}{1-z_{0}-(z-z_{0})} = \frac{1}{1-z_{0}}*\frac{1}{1-\Big[\frac{1}{1-z_{0}}*(z-z_{0})\Big]} = ...[/mm]
>  
> um jetzt mal weiter zu machen
>  
> [mm]...=\summe_{n=0}^{\infty}(z_0)^n*\summe_{n=0}^{\infty}(\frac{1}{1-z_{0}}*(z-z_{0})\))^n[/mm]

Ok, aber du brauchst [mm] $\frac{1}{1-z_{0}}$ [/mm] nicht in eine Potenzreihe zu entwickeln, das ist ein konstanter Term, unabhängig von z!

$= [mm] \frac{1}{1-z_{0}}*\summe_{n=0}^{\infty}\left(\frac{1}{1-z_{0}}*(z-z_{0})\right)^{n}$ [/mm]

An dieser Stelle bist du schon fertig. Berechne den Konvergenzradius der Potenzreihe!

> [mm]=\summe_{n=0}^{\infty}(z_0)^n*(\frac{1}{1-z_{0}}*(z-z_{0})\))^n[/mm]

Du traust dir was :-)
Hast du schonmal (a+b)*(c+d) ausmultipliziert? Ist bei dir auch a*c + b*d rausgekommen?

Grüße,
Stefan

Bezug
                                
Bezug
Potenzreihenentwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:51 Mo 21.06.2010
Autor: Kinghenni

och nö -.-
es is schon spät...
aber vielen dank das du mich jetzt nicht zappeln lässt^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de