www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Potenzsume
Potenzsume < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzsume: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 17:12 Fr 11.11.2005
Autor: Frisco

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt

Hallo hoffentlich kann mir jemand helfen ich habe da eine aufgabe und habe wirklich keine Ahnung wie die geht, weil ich bei dieser vorlesung krank war :-(

Also sie lautet wie folgt:
Sei [mm] S_{p}(N) [/mm] für N [mm] \in \IN [/mm] und p [mm] \in \IN_{0} [/mm] defineirt durch
[mm] S_{p}(N) [/mm] = [mm] \summe_{k=1}^{N} k^{p} [/mm]
So und jetzt soll ich folgende rekursive Potenformel herleiten und ich habe wirklich keine Ahnung!
Sie lautet:
[mm] S_{p-1}(N) [/mm] = [mm] \bruch{1}{p}(N+1)^p [/mm] - [mm] \bruch{1}{p} \summe_{k=0}^{p-2} \vektor{p\\k} S_{k}(N) [/mm] - [mm] \bruch{1}{p} [/mm]

also bitte helft mir mit der Lösung!!
Bitte mit ausführlicher Lösung, und wie stehen überhaupt Die Summe von einer Summe zusammen??

        
Bezug
Potenzsume: Hinweis
Status: (Antwort) fertig Status 
Datum: 20:04 Fr 11.11.2005
Autor: MathePower

Hallo Frisco,

[willkommenmr]

> Hallo hoffentlich kann mir jemand helfen ich habe da eine
> aufgabe und habe wirklich keine Ahnung wie die geht, weil
> ich bei dieser vorlesung krank war :-(
>  
> Also sie lautet wie folgt:
>  Sei [mm]S_{p}(N)[/mm] für N [mm]\in \IN[/mm] und p [mm]\in \IN_{0}[/mm] defineirt
> durch
> [mm]S_{p}(N)[/mm] = [mm]\summe_{k=1}^{N} k^{p}[/mm]
>  So und jetzt soll ich
> folgende rekursive Potenformel herleiten und ich habe
> wirklich keine Ahnung!
>  Sie lautet:
>  [mm]S_{p-1}(N)[/mm] = [mm]\bruch{1}{p}(N+1)^p[/mm] - [mm]\bruch{1}{p} \summe_{k=0}^{p-2} \vektor{p\\k} S_{k}(N)[/mm]
> - [mm]\bruch{1}{p}[/mm]
>  
> also bitte helft mir mit der Lösung!!

die Aufgabe hat es in sich.

Zunächst benötigen wir die allgemeine Summenformel. Diese bekommen wir, wenn wir die das folgende betrachten:

[mm] \sigma _n : = \;1\; + \;e^x \; + \;e^{2x} \; + \; \cdots \; + \;e^{nx} \; = \;1 + \sum\limits_{p = 0}^\infty {\frac{{x^p }} {{p!}}} \;\left( {1^p \; + \; \cdots \; + \;n^p } \right)\; = \;\sum\limits_{p = 0}^\infty {\frac{{S_p \left( n \right)}} {{p!}}\;x^p } [/mm]

und

[mm] \sigma _n : = \;\frac{{e^{\left( {n + 1} \right)\;x} - \;1}} {{e^x \; - \;1}}\; = \;\frac{x} {{e^x \; - \;1}}\;\frac{{e^{\left( {n + 1} \right)\;x} - \;1}} {x}\; = \;\sum\limits_{k = 0}^\infty {\frac{{B_k }} {{k!}}\;x^k \;\sum\limits_{l = 0}^\infty {\frac{{\left( {n + 1} \right)^{l + 1} }} {{\left( {l + 1} \right)!}}\;x^l } } [/mm]

mit [mm]\sum\limits_{i = 0}^n {\left( {\begin{array}{*{20}c} {n + 1} \\ i \\ \end{array} } \right)} \;B_i \; = \;0[/mm]

Diese beiden Reihen werden nun ausmultipliziert (Cauchy-Produkt) und mit der ersteren Reihe verglichen. Daraus ergibt sich dann eine Formel für die ersten n p-ten Potenzen.

Mit deren Hilfe kann man dann eine Rekursionsformel aufstellen.

Gruß
MathePower

Bezug
                
Bezug
Potenzsume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:18 Fr 11.11.2005
Autor: Frisco

ich habe von dem Aufgabenmacher an unsere Uni einen Tipp bekommen und zwar der wiefolgt lautet, vielleicht wird es dann leichter!!

Expandieren Sie (1 + [mm] n)^p [/mm] - [mm] n^p [/mm]  mittels des Binomischen Lehrsatzes. Summieren Sie die so erhaltene Gleichung anschließend über n von 1;....;N.

was meint er damit??
könntest du mir vielleicht die aufgabe vormachen?? Bitte :-)


Bezug
                        
Bezug
Potenzsume: Erklärung
Status: (Antwort) fertig Status 
Datum: 21:38 Fr 11.11.2005
Autor: MathePower

Hallo Frisco,

> ich habe von dem Aufgabenmacher an unsere Uni einen Tipp
> bekommen und zwar der wiefolgt lautet, vielleicht wird es
> dann leichter!!
>  
> Expandieren Sie (1 + [mm]n)^p[/mm] - [mm]n^p[/mm]  mittels des Binomischen
> Lehrsatzes. Summieren Sie die so erhaltene Gleichung
> anschließend über n von 1;....;N.
>  
> was meint er damit??

Das sollst Du verwenden.

>  könntest du mir vielleicht die aufgabe vormachen?? Bitte

Also gut:

Zunächst obige Formel etwas vereinfacht:

[mm] \left( {1 + \;n} \right)^p \; - \;n^p \; = \;\sum\limits_{k = 0}^p {\left( {\begin{array}{*{20}c} p \\ k \\ \end{array} } \right)\;n^k } \; - \;n^p \; = \;\sum\limits_{k = 0}^{p - 1} {\left( {\begin{array}{*{20}c} p \\ k \\ \end{array} } \right)\;n^k } [/mm]

Dann summieren wir auf:

[mm] \begin{gathered} \sum\limits_{n = 1}^N {\sum\limits_{k = 0}^{p - 1} {\left( {\begin{array}{*{20}c} p \\ k \\ \end{array} } \right)\;n^k } \; = \;\sum\limits_{k = 0}^{p - 1} {\left( {\begin{array}{*{20}c} p \\ k \\ \end{array} } \right)\;\sum\limits_{n = 1}^N {n^k } } \; = \;\sum\limits_{k = 0}^{p - 1} {\left( {\begin{array}{*{20}c} p \\ k \\ \end{array} } \right)\;S_k \left( N \right)} } \hfill \\ \sum\limits_{n = 1}^N {\left( {1 + \;n} \right)^p \; - \;n^p } \; = \;2^p \; - \;1^p \; + \;3^p \; - \;2^p \; + \; \cdots \; + \;\left( {N + 1} \right)^p \; - \;N^P \; = \;\left( {N + 1} \right)^p \; - \;1 \hfill \\ \end{gathered} [/mm]

Vergleich beider Summen liefert:

[mm] \begin{gathered} \sum\limits_{k = 0}^{p - 1} {\left( {\begin{array}{*{20}c} p \\ k \\ \end{array} } \right)\;S_k \left( N \right)} \; = \;\left( {N + 1} \right)^p \; - \;1 \hfill \\ \Leftrightarrow \;p\;S_{p - 1} \left( N \right)\; + \;\sum\limits_{k = 0}^{p - 2} {\left( {\begin{array}{*{20}c} p \\ k \\ \end{array} } \right)\;S_k \left( N \right)} \; = \;\left( {N + 1} \right)^p \; - \;1 \hfill \\ \Rightarrow \;S_{p - 1} \left( N \right)\; = \;\frac{1} {p}\;\left( {\left( {N + 1} \right)^p \; - \;1\; - \;\sum\limits_{k = 0}^{p - 2} {\left( {\begin{array}{*{20}c} p \\ k \\ \end{array} } \right)\;S_k \left( N \right)} } \right) \hfill \\ \end{gathered} [/mm]

Gruß
MathePower


Bezug
                                
Bezug
Potenzsume: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:51 Fr 11.11.2005
Autor: Frisco

Danke für deine Mühen hast mir sehr geholfen :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de