www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algorithmen und Datenstrukturen" - Prädikatenlogik erser stufe
Prädikatenlogik erser stufe < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Prädikatenlogik erser stufe: resolution und andere
Status: (Frage) überfällig Status 
Datum: 17:49 Sa 28.03.2009
Autor: userzwo

Aufgabe
1. Aufgabe
Es seien P eine Menge von Aussgensymbolen und [mm] \phi, \psi \in Form_{\Sigma}(P). [/mm] Gib an welche der folgenden Aufgaben wahr oder falsch sind.

i) Ist S eine Klauselrepräsentation von [mm] \phi \wedge \psi [/mm] und ist aus S die leere Klausel beweisbar, so gilt [mm] \phi [/mm] ||- [mm] \psi [/mm]

ii) Aus einer Klauselrepräsentation von [mm] \phi \wedge \neg\phi [/mm]  ist die leere Klausel beweisbar.

iii) Aus einer Klauselrepräsentation von [mm] \phi \vee \neg\phi [/mm]  ist die leere die leere Klausel beweisbar.

iv) Ist eine Klauselrepräsentation zu [mm] \phi, [/mm] aus der die leere Klausel beweisbar ist, so ist [mm] \neg\phi [/mm] allgemeingültig.

hallo leute,

ich schreibe in den nächsten tagen eine klausur zum thema prädikatenlogik erster stufe. ich würde mich freuen wenn sich mal jemand meine antwroten ansehen könnte und mir etwas feddback gibt was so alles falsch ist.
vielen dank schon mal an alle

1. Aufgabe Multiple Choice

falsch
wahr
falsch
falsch

2. Aufgabe Resolutionsverfahren

1. {¬r ∨ p, ¬r ∨ ¬q, q ∨ r, ¬p ∨ q} ||- ¬r ∧ q

Φ = {¬r ∨ p, ¬r ∨ ¬q, q ∨ r, ¬p ∨ q}

φ = ¬r ∧ q

Φ ∪ {¬φ} = Φ' = {¬r ∨ p, ¬r ∨ ¬q, q ∨ r, ¬p ∨ q, r, ¬q}

Dann ist

φ = ( ¬r ∨ p) ∧ (¬r ∨ ¬q) ∧ (q ∨ r) ∧ (¬p ∨ q) ∧ r ∧ ¬q

und eine Klauselmenge zu φ ist

Sφ = {{¬r ∨ p}, {¬r ∨ ¬q}, {q ∨ r}, {¬p ∨ q}, {r}, {¬q}}

{q ∨ r},{¬q} → {r}
{¬p, q}, {¬q} → {¬p}
{¬r, p},{r} → {p}
{¬p},{p} → ∅

Die leeree Klausel ist beweisbar, somit ist φ unerfüllbar.


2. {(p → q) ∨ r, q ∨ r, (p ∧ q) → r} ||- ¬r ∧ ¬q ∧ ¬p

Φ = {(p → q) ∨ r, q ∨ r, (p ∧ q) → r}

ψ = ¬r ∧ ¬q ∧ ¬p

Φ ∪ {¬φ} = {(p → q) ∨ r, q ∨ r, (p ∧ q) → r, r, q ,p}

Φ' = {¬p ∨ q ∨ r, q ∨ r, ¬p ∨ ¬q ∨ r, r, q , p}

φ = (¬p ∨ q ∨ r) ∧ (q ∨ r) ∧ (¬p ∨ ¬q ∨ r) ∧ r ∧ q ∧ p

Sφ = {{¬p, q, r}, {q, r}, {¬p, ¬q, r}, {r}, {q}, {p}}

Die leere Klausel ist nicht beweisbar, da kein r in negierter Form vorliegt.
Somit ist φ erfüllbar.


ich freue mich über jede antwort

gruß userzwo







Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Prädikatenlogik erser stufe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mo 30.03.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de