www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Prämaße auf F^1
Prämaße auf F^1 < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Prämaße auf F^1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:33 Fr 01.11.2013
Autor: EvelynSnowley2311

Aufgabe
a)

Sei F : [mm] \IR \to \IR [/mm] nichtfallend.

Sei

[mm] \mu_F [/mm] ([a,b)) := F(b) - F(a) für alle a < b ein Prämaß auf [mm] F^1 [/mm] (Menge aller endlichen Vereinigungen von rechtshalboffenen Intervallen)

Zu zeigen:

Zu jedem Intervall [a,b) , a < b existiert ein  c [mm] \in [/mm] (a,b) , sodass
[mm] \mu_F [/mm] ([a,b)) - [mm] \mu_F [/mm] ([a,c)) < [mm] \varepsilon [/mm]

ist.

Huhu zusammen!

Also vorrausgesetzt ist, dass [mm] \mu_F [/mm] Prämaß ist und man hat uns gesagt, dass diese Aufgabe zu zeigen ist mit der Eigenschaft der linksseitgen Stetigkeit.

es ist

[mm] \mu_F [/mm] ([a,b)) - [mm] \mu_F [/mm] ([a,c)) = F(b) - F(a) - ( F(c) -F(a) )

= F(b) - F(c) und dies soll kleiner [mm] \varepsilon [/mm] sein.

Die Funktion F ist nicht monoton fallend.
Also ist F(b) [mm] \ge [/mm] F(c) . ( da c [mm] \in [/mm] (a,b))

linksseitig stetig bedeutet nun allgemein, dass
[mm] \limes_{x \rightarrow b-} [/mm] F(x) = F(b) oder spezieller hier, dass
[mm] \limes_{c \rightarrow b-} [/mm] F(c) = F(b)

Also könnte ich dies umschreiben zu

[mm] \limes_{c \rightarrow b-} [/mm] F(c) - F(c) < [mm] \varepsilon [/mm]

Soweit sind meine Vorüberlegungen. Ich glaube nah dran zu sein, aber im Moment weiß ich den nächsten Schritt nicht, daher wäre ich dankbar für Ratschläge :)



Lieben Gruß

Eve

        
Bezug
Prämaße auf F^1: Antwort
Status: (Antwort) fertig Status 
Datum: 08:37 So 03.11.2013
Autor: tobit09

Hallo Eve!


> a)
>  
> Sei F : [mm]\IR \to \IR[/mm] nichtfallend.
>  
> Sei
>
> [mm]\mu_F[/mm] ([a,b)) := F(b) - F(a) für alle a < b ein Prämaß
> auf [mm]F^1[/mm] (Menge aller endlichen Vereinigungen von
> rechtshalboffenen Intervallen)
>  
> Zu zeigen:
>  
> Zu jedem Intervall [a,b) , a < b existiert ein  c [mm]\in[/mm] (a,b)
> , sodass
>  [mm]\mu_F[/mm] ([a,b)) - [mm]\mu_F[/mm] ([a,c)) < [mm]\varepsilon[/mm]
>
> ist.

  

> Also vorrausgesetzt ist, dass [mm]\mu_F[/mm] Prämaß ist und man
> hat uns gesagt, dass diese Aufgabe zu zeigen ist mit der
> Eigenschaft der linksseitgen Stetigkeit.

Guter Tipp. Die linksseitige Stetigkeit von F wurde ja in einer anderen Aufgabe gezeigt.

> es ist
>  
> [mm]\mu_F[/mm] ([a,b)) - [mm]\mu_F[/mm] ([a,c)) = F(b) - F(a) - ( F(c) -F(a)
> )
>  
> = F(b) - F(c) und dies soll kleiner [mm]\varepsilon[/mm] sein.

Ja.

> Die Funktion F ist nicht monoton fallend.
>  Also ist F(b) [mm]\ge[/mm] F(c) . ( da c [mm]\in[/mm] (a,b))

Ja.

> linksseitig stetig

an der Stelle b

> bedeutet nun allgemein, dass
>  [mm]\limes_{x \rightarrow b-}[/mm] F(x) = F(b) oder spezieller
> hier, dass
>  [mm]\limes_{c \rightarrow b-}[/mm] F(c) = F(b)

Ja.

> Also könnte ich dies umschreiben zu
>  
> [mm]\limes_{c \rightarrow b-}[/mm] F(c) - F(c) < [mm]\varepsilon[/mm]

Das gilt zwar (denn $F(c)-F(c)=0$ für alle $c$), aber hat nichts mehr mit der linksseitigen Stetigkeit von F zu tun und hilft uns leider nicht weiter.

Es gilt aber

     [mm] $\lim_{c\rightarrow b-}(F(b)-F(c))=F(b)-F(b)=0$. [/mm]

Also existiert ein [mm] $\delta>0$ [/mm] mit

     [mm] $F(b)-F(c)<\varepsilon$ [/mm]

für alle $c<b$ mit [mm] $b-c<\delta$. [/mm]

Speziell gilt dies also z.B. für [mm] $c:=b-\bruch{\delta}{2}$ [/mm] .


Viele Grüße
Tobias

Bezug
                
Bezug
Prämaße auf F^1: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:04 So 03.11.2013
Autor: EvelynSnowley2311

Vielen lieben Dank tobit09 :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de