www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Primelemente und Euklid Algor
Primelemente und Euklid Algor < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primelemente und Euklid Algor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:48 Do 26.01.2012
Autor: Blubie

Aufgabe
Sei [mm] M=10001=100^{2}+1=76^{2}+65^{2}. [/mm] Bestimme die gewöhnlichen Primfaktoren von M mittels des Euklidischen Algorithmus für a=100+i und b=76+65i. Gib eine Faktorisierung von M in Primelemente von [mm] \IZ[i] [/mm] an.
[mm] (\IZ[i]=\{w+zi:w,z \in \IZ\}) [/mm]

Der gewöhnliche Euklidische Algorithmus ist wohl bekannt. Jedoch weiß ich nicht, was ich hier eigentlich machen soll.
Ich würde wohl auch noch den größten gemeinsamen Teiler von a und b im Euklidischen Ring [mm] (\IZ[i],N) [/mm] mit [mm] N(x+yi)=x^{2}+y^{2} [/mm] bestimmen können. Allerdings verwirrt mich hier der Begriff des Primfaktors. Was sind denn "gewöhnlichen Primfaktoren"? Und was ist der Unterschied zu einem "Primelement"?


Gruß

        
Bezug
Primelemente und Euklid Algor: Antwort
Status: (Antwort) fertig Status 
Datum: 15:29 Do 26.01.2012
Autor: leduart

Hallo
soweit ich die aufgabe verstehe sollst du einerseit 10001=73*137 bestimmen, aber über den Weg der Zerlegung der beiden komplexen Zahlen mit dem Betragsquadrat M, und du sollst
die Zerlegung von M in komplexe "Primelemente"!
triviales Beispiel 2=2 Prim in [mm] \IZ [/mm] 2=(1+i)*(1-i) in $ [mm] \IZ[i] [/mm] $
Gruss leduart

Bezug
                
Bezug
Primelemente und Euklid Algor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Do 26.01.2012
Autor: Blubie

Wie kann man denn, wenn ich ggT(a,b) bestimme daraus auf die Primelemente von M schließen?

Bezug
                        
Bezug
Primelemente und Euklid Algor: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Do 26.01.2012
Autor: leduart

Hallo
du hast
(100+i)*(100-i)=(76+65i)*(76-65i)
du findest ggT(a,b)=1 dann musst du [mm] ggT(a,\overline{b} [/mm] bestimmen.
a und b durch denn ggT teilen, ergibt dann a,b und die konj komplexen als Produkt, Die Faktoren stellen sich als prim in [mm] \IZ[i] [/mm] raus. ihre Betragsquadrate  geben die ganzen  Teiler von 10001. die Primfaktorzerlegung hast du damit auch.
Gruss leduart

Bezug
                                
Bezug
Primelemente und Euklid Algor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 Do 26.01.2012
Autor: Blubie

Ich kann dir leider nicht ganz folgen :( Kannst du das etwas genauer erklären? Warum ist das so?

Bezug
                                        
Bezug
Primelemente und Euklid Algor: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Do 26.01.2012
Autor: leduart

Hallo
ggT(a,b)=1
[mm] ggT(a,\overline{b})=p [/mm]
daraus : a=p*q  [mm] \overline{b}=p*r \overline{a}=\overline{p}*\overline{q} b=\overline{p}*\overline{r} [/mm]
[mm] 10001=|a|^2=|p|^2*|q|^2 [/mm] das gibt die 137 und 73 beides Primzahlen
entsprechend [mm] |b|^2 [/mm] muss dasselbe Ergebnis haben
aber p musst du erst mal ausrechnen, daraus q und r
Gruss leduart


Bezug
                                                
Bezug
Primelemente und Euklid Algor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:18 Do 26.01.2012
Autor: Blubie

wieso ist [mm] \overline{b}=p*r*\overline{a} [/mm] und was ist r?
Bezug
                                                        
Bezug
Primelemente und Euklid Algor: Antwort
Status: (Antwort) fertig Status 
Datum: 23:57 Do 26.01.2012
Autor: leduart

Hallo
> wieso ist [mm]\overline{b}=p*r*\overline{a}[/mm] und was ist r?

Da fehlt ein Zwischenraum
[mm] ggT(a,\overline{b})=p [/mm]
daraus : a=p*q  
$ [mm] \overline{b}=p\cdot{}r [/mm] $
was r ist sollte klar sein, man kann [mm] \overline{b}=p*r [/mm] ; r ganz schreiben, weil es durch p teilbar ist.

[mm] \overline{a}=\overline{p}\cdot{}\overline{q} [/mm]
[mm] $b=\overline{p}\cdot{}\overline{r} [/mm] $

$ [mm] 10001=|a|^2=|p|^2\cdot{}|q|^2 [/mm] $ das gibt die 137 und 73 beides Primzahlen
entsprechend $ [mm] |b|^2 [/mm] $ muss dasselbe Ergebnis haben
aber p musst du erst mal ausrechnen, daraus q und r
ich hab meinen Schrieb nochmal kopiert und deutlicher getrennt
Gruss leduart




Bezug
                                                                
Bezug
Primelemente und Euklid Algor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:21 Fr 27.01.2012
Autor: Blubie

Vielen Dank. Jetzt habe ich es verstanden :)

Eine weitere Frage ist noch: Ist es beim Euklidischen Algorithmus allgemein egal, ob am Anfang bei der Form a=bq+r die Norm von b größer ist als a? In meinem Satz im Skript steht darüber nämlich leider nichts :(


Gruß

Bezug
                                                                        
Bezug
Primelemente und Euklid Algor: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 Fr 27.01.2012
Autor: leduart

Hallo
mit |a|<|b| wird das Verfahren nicht falsch, aber unnötig verlängert,
dagegen man sollte |r|<|q| hinkriegen sonst wird das Verfahren auch verlängert.
Welche primfaktoren hast du raus?
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de