www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Primideale
Primideale < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primideale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Di 28.10.2008
Autor: jokerose

Aufgabe
Sei R = [mm] \IZ[\wurzel{-5}]. [/mm]

Zeigen Sie, dass die Ideale [mm] (2,1+\wurzel{-5}) [/mm] und [mm] (2,1-\wurzel{-5}) [/mm] in R Primideale sind.

Es gilt ja folgendes Lemma:

Sei R'=R \ {0} \ U(R), dann
p [mm] \in [/mm] R' Primelement [mm] \gdw [/mm] (p) [mm] \subset [/mm] R Primideal.

z.B. sind 2 und [mm] 1+\wurzel{5} [/mm] keine Primelemente in R.
Also wären (2) und [mm] (1+\wurzel{5}) [/mm] keine Primideale in R.

Doch bei dieser Aufgabe geht es ja um "doppelte" Ideale, nämlich [mm] (2,1+\wurzel{-5}) [/mm] . Kann ich hier das Lemma auch irgendwie anwenden, oder muss ich ganz anders vorgehen?

        
Bezug
Primideale: Antwort
Status: (Antwort) fertig Status 
Datum: 09:22 Mi 29.10.2008
Autor: felixf

Hallo

> Sei R = [mm]\IZ[\wurzel{-5}].[/mm]
>  
> Zeigen Sie, dass die Ideale [mm](2,1+\wurzel{-5})[/mm] und
> [mm](2,1-\wurzel{-5})[/mm] in R Primideale sind.
>  
> Es gilt ja folgendes Lemma:
>  
> Sei R'=R \ {0} \ U(R), dann
>  p [mm]\in[/mm] R' Primelement [mm]\gdw[/mm] (p) [mm]\subset[/mm] R Primideal.
>  
> z.B. sind 2 und [mm]1+\wurzel{5}[/mm] keine Primelemente in R.
>  Also wären (2) und [mm](1+\wurzel{5})[/mm] keine Primideale in R.
>  
> Doch bei dieser Aufgabe geht es ja um "doppelte" Ideale,
> nämlich [mm](2,1+\wurzel{-5})[/mm] . Kann ich hier das Lemma auch
> irgendwie anwenden, oder muss ich ganz anders vorgehen?

Du musst anders vorgehen, das Lemma hilft dir hier nicht.

Untersuche doch mal den Quotient [mm] $\IZ[\sqrt{-5}] [/mm] / (2, 1 + [mm] \sqrt{-5})$. [/mm] Dieser muss ein Integritaetsring sein (und somit ein endlicher Koerper, da endliche Int'ringe bereits Koerper sind), damit $(2, 1 + [mm] \sqrt{-5})$ [/mm] ein Primideal ist.

LG Felix


Bezug
                
Bezug
Primideale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:25 So 02.11.2008
Autor: jokerose

ok, ich habs mal mit dem Quotienten versucht.

Folgende Isomorphismen gelten ja:

[mm] R/(2,1+\wurzel{-5}) \cong (\IZ[x]/(x^2+5))/(2,1+x) \cong (\IZ/2[x])/(1+x) [/mm]

die erste Relation folgt aus dem Entsprechungssatz.

Doch bringt mir dies nun weiter? Wie kann ich nun folgern, dass [mm] R/(2,1+\wurzel{-5}) [/mm] ein Integritätsring ist?

Bezug
                        
Bezug
Primideale: Antwort
Status: (Antwort) fertig Status 
Datum: 20:54 So 02.11.2008
Autor: felixf

Hallo

> ok, ich habs mal mit dem Quotienten versucht.
>  
> Folgende Isomorphismen gelten ja:
>  
> [mm]R/(2,1+\wurzel{-5}) \cong (\IZ[x]/(x^2+5))/(2,1+x) \cong (\IZ/2[x])/(1+x)[/mm]

Soweit so gut.

> die erste Relation folgt aus dem Entsprechungssatz.
>  
> Doch bringt mir dies nun weiter? Wie kann ich nun folgern,
> dass [mm]R/(2,1+\wurzel{-5})[/mm] ein Integritätsring ist?

Wieviele Elemente hat der Ring denn?

Oder kannst du das sonstwie noch vereinfachen?

LG Felix


Bezug
                                
Bezug
Primideale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:11 Mo 03.11.2008
Autor: jokerose

Hallo,

> Wieviele Elemente hat der Ring denn?
>  
> Oder kannst du das sonstwie noch vereinfachen?
>  

Also der letzte Ring sieht doch so aus:

[mm] \{a_0 + a_1x + ... + a_nx^n + (1+x) | a_i \in 0 , 1 \} [/mm]

Aber ich sehe gerade nicht, wie ich dies noch vereinfachen kann...

Bezug
                                        
Bezug
Primideale: Antwort
Status: (Antwort) fertig Status 
Datum: 08:40 Mo 03.11.2008
Autor: felixf

Hallo

> > Wieviele Elemente hat der Ring denn?
>  >  
> > Oder kannst du das sonstwie noch vereinfachen?
>  >  
>
> Also der letzte Ring sieht doch so aus:
>  
> [mm]\{a_0 + a_1x + ... + a_nx^n + (1+x) | a_i \in 0 , 1 \}[/mm]
>  
> Aber ich sehe gerade nicht, wie ich dies noch vereinfachen
> kann...

Ok, nehmen wir mal ein anderes Beispiel.

Kennst du den Ring [mm] $\IR[x] [/mm] / [mm] (x^2 [/mm] + 1)$? Weisst du wie der aussieht?

LG Felix


Bezug
                                                
Bezug
Primideale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:04 Di 04.11.2008
Autor: jokerose

Hallo,

Also ich habe nun herausgefunden, wie viele Elemente der Ring [mm] (\IZ/2[x])/(1+x) [/mm] hat.

Ich denke, das müssen die zwei Elemente 1 + (1+x) und (1+x) sein...?

Folgt aus "Division mit Rest".

Doch wie muss ich nun weiterfahren? Muss ich zeigen, dass dieser Ring ein Integritätsbereich ist?


Bezug
                                                        
Bezug
Primideale: Antwort
Status: (Antwort) fertig Status 
Datum: 23:40 Di 04.11.2008
Autor: felixf

Hallo

> Also ich habe nun herausgefunden, wie viele Elemente der
> Ring [mm](\IZ/2[x])/(1+x)[/mm] hat.
>  
> Ich denke, das müssen die zwei Elemente 1 + (1+x) und (1+x)
> sein...?
>  
> Folgt aus "Division mit Rest".

Genau, der Ring hat zwei Elemente.

> Doch wie muss ich nun weiterfahren? Muss ich zeigen, dass
> dieser Ring ein Integritätsbereich ist?

Wieviele Ringe kennst du, die zwei Elemente haben?

LG Felix


Bezug
                                                                
Bezug
Primideale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:17 Mi 05.11.2008
Autor: jokerose

Hallo

> Wieviele Ringe kennst du, die zwei Elemente haben?
>  

Also das kann nur der Ring sein, der die zwei Elemente 0 und 1 besitzt.
Also ist der Ring [mm] (\IZ/2[x])/(1+x) [/mm] isomorph zu diesem soeben genannten Ring.
Dieser ist ein Integritätsbereich und somit ist auch [mm] (\IZ/2[x])/(1+x) [/mm] ein Integritätsbereich. Kann ich dies so folgern?


Bezug
                                                                        
Bezug
Primideale: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Mi 05.11.2008
Autor: felixf

Hallo

> > Wieviele Ringe kennst du, die zwei Elemente haben?
>  >  
>
> Also das kann nur der Ring sein, der die zwei Elemente 0
> und 1 besitzt.

Genau, es ist der endliche Koerper mit zwei Elementen.

>  Also ist der Ring [mm](\IZ/2[x])/(1+x)[/mm] isomorph zu diesem
> soeben genannten Ring.
> Dieser ist ein Integritätsbereich und somit ist auch
> [mm](\IZ/2[x])/(1+x)[/mm] ein Integritätsbereich. Kann ich dies so
> folgern?

Ja.

LG Felix


Bezug
                                                                                
Bezug
Primideale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:49 Mi 05.11.2008
Autor: jokerose

Super, vielen Dank für die Hilfe. :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de