www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Primitives Element
Primitives Element < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primitives Element: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:39 Do 20.06.2013
Autor: NiklasKlause

Aufgabe
Zeigen Sie, dass in einem Körper k := K[X]/f mit K = Z/2 und f = [mm] X^3 [/mm] + X + 1 jedes Element (außer 0 und 1) primitiv ist.

Hallo,

an diese Aufgabe bin ich mit folgendem Ansatz rangegangen,

-> Da der grad des Polynomes f 3 und K über Z/2 ist, folgt, dass der Körper aus [mm] 2^3 [/mm] = 8 Elementen besteht.
-> ohne dem "NullModuloPolynom" (k.A., wie man es fachlich bezeichnet :() haben wir dann für jedes a aus dem K* die max. mögliche Ordnung 8 - 1 = 7
-> Da 7 schon eine Primzahl ist, lässt sie sich nicht weiter zerlegen
-> Da es nur eine mögliche Ordnung, die prim ist, für jedes a gibt, ist jedes Element dann primitiv.


Würde mich über ihre Korrektur freuen!
lg Niklas

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Primitives Element: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Do 20.06.2013
Autor: Teufel

Hi!

Genau, du hast hier den Körper [mm] \mathbb{F}_8 [/mm] mit 8 Elementen. Dann gilt [mm] |\mathbb{F}_8^\*|=7, [/mm] weil alle Elemente außer der 0 invertierbar sind (du kannst das Ding ruhig Nullpolynom oder einfach Null  nennen).

Deine Ausführung wird ab hier etwas schwer nachzuvollziehen, aber ich glaube, dass du das richtige meinst. 7 ist also prim, genau. Wenn du also ein Polynom [mm] $a\not=0,1$ [/mm] aus deinem Körper nimmst, dann ist die davon erzeugte Untergruppe [mm] $\left< a \right>$ [/mm] eine Untergruppe von [mm] \mathbb{F}_8^\*. [/mm] Dann gilt aber [mm] |\left< a \right>| [/mm] teilt [mm] |\mathbb{F}_8^\*|=7, [/mm] also muss schon [mm] |\left< a \right>|=7 [/mm] sein (=1 geht nicht wegen [mm] $a\not=1 [/mm] $). Also ist $a$ ein Erzeuger von [mm] \mathbb{F}_8^\*. [/mm]

In etwa so könntest du das machen!

Bezug
                
Bezug
Primitives Element: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:10 Fr 21.06.2013
Autor: felixf

Moin Teufel,

um das ein wenig zu praezisieren:

> Wenn du also ein Polynom [mm]a\not=0,1[/mm] aus deinem Körper nimmst,

Der Koerper besteht nicht aus Polynomen, sondern Restklassen (von Polynomen). Ich wuerde hier eher von Restklassen oder Elementen sprechen, mit Polynom meint man meist etwas anderes ;-)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de