www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Primitivwurzel
Primitivwurzel < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primitivwurzel: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:30 So 15.12.2013
Autor: DrRiese

Aufgabe
Sei p eine ungerade Primzahl und w [mm] \in \IZ, [/mm] 1 < w < [mm] p^{l} [/mm] ungerade, eine Primitivwurzel modulo [mm] p^{l}, [/mm] l [mm] \in \IN. [/mm] Zeigen Sie, dass dann w auch eine Primitivwurzel modulo [mm] 2p^{l} [/mm] sein muss.

Hallo :-)
Komme bei dieser Aufgabe nicht wirklich über den Ansatz hinaus..

Wir wissen: w Primitivwurzel modulo [mm] p^{l}, [/mm] also [mm] w^{p^{l}-1} \equiv [/mm] 1 mod [mm] p^{l} [/mm]
[mm] p^{l}|w^{p^{l}-1}-1 [/mm]

z.Z.
[mm] 2p^{l}|w^{2p^{l}-1}-1 [/mm]

Man kann schreiben: [mm] w^{p^{l}-1}=(w^{p^{l}-1})^{p^{l}}=w^{2p^{l}-1}, [/mm] also

[mm] p^{l}|w^{2p^{l}-1}-1 [/mm]

Und nun muss ich irgendwie zeigen, dass gilt [mm] p^{l}+p^{l}|w^{2p^{l}-1}-1 \gdw w^{2p^{l}-1} \equiv [/mm] 1 mod [mm] 2p^{l} [/mm]

Hätte jemand ne Idee? :-)

        
Bezug
Primitivwurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 So 15.12.2013
Autor: Schadowmaster

Hey,

deine Definition einer Primitivwurzel ist leider noch etwas falsch, guck die bitte nochmal ganz genau nach.
Dann wirst du sehen, dass du zeigen musst:
[mm] $2p^l \mid w^{p^l-1}-1$ [/mm] und [mm] $p^l-1$ [/mm] ist die kleinste Zahl $k$ mit [mm] $2p^l \mid w^k-1$. [/mm]

Wenn du dabei nicht weiter kommst sag gern Bescheid.


lg

Schadow

Bezug
                
Bezug
Primitivwurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:13 Mo 16.12.2013
Autor: DrRiese

Tut mir leid, weiss da aber nicht so richtig weiter, wie man das jetzt allg zeigen könnte :-(

Bezug
                        
Bezug
Primitivwurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 00:06 Di 17.12.2013
Autor: Schadowmaster

Der erste Schritt besteht darin, die Definition nachzugucken:

Sei $n [mm] \in \IN$. [/mm] Ein $w [mm] \in \IZ$ [/mm] heißt primitive Einheitswurzel zu $n$, wenn gilt:
-
-
-

Guck mal genau nach, was hier gelten muss, wie ihr das definiert habt.
Wenn du das hast und die Definition verstanden hast, dann können wir uns an die Frage machen, wie genau das jetzt gezeigt werden kann.

Bezug
                                
Bezug
Primitivwurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:31 Di 17.12.2013
Autor: DrRiese

Ok :-)

Also wir haben es folgendermaßen gemacht:

Ein erzeugendes Element von [mm] \IF^{\*} [/mm] heißt primitives Element von [mm] \IF, [/mm] Primitivwurzel modulo p, falls [mm] \IF [/mm] = [mm] \IZ_{p}. [/mm]

Kann man bestimmt noch schöner machen:

Ein Element w [mm] \in \IZ_{p} [/mm] heißt Primitivwurzel, wenn gilt [mm] \IZ_{p}^{\*}=\{w^{m}|m \in \IZ\}, [/mm] für p prim.

Hierbei muss gelten: [mm] w^{ord \IZ_{p}^{\*}} [/mm] = 1 und [mm] w^{k} \not= [/mm] 1, [mm] \forall [/mm] k < ord [mm] \IZ_{p}^{\*}. [/mm]

Wir wissen: ord w = [mm] p^{l}-1 [/mm]
zu zeigen: [mm] w^{2p^{l}-1} [/mm] mod [mm] 2p^{l}-1 [/mm] = 1 und [mm] w^{k} [/mm] mod [mm] 2p^{l}-1 \not= [/mm] 1, [mm] \forall [/mm] k < [mm] 2p^{l}-1 [/mm]



LG :-)

Bezug
                                        
Bezug
Primitivwurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 Di 17.12.2013
Autor: Schadowmaster

Naja, fast.
Ein Problem noch:
Was sind die Ordnungen von [mm] $\IZ_{p^l}^{\*}$ [/mm] und [mm] $\IZ_{2p^l}^{\*}$. [/mm]
Als Tipp: Es sind nicht [mm] $p^l-1$ [/mm] oder [mm] $2p^l-1$. [/mm] :)

Sonst sieht die Definition bis zum "Wir wissen" gut aus.


lg

Schadow

Bezug
                                                
Bezug
Primitivwurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:24 Di 17.12.2013
Autor: DrRiese

Achsoo, bin ich mit der Ordnung falsch abgebogen :-)

Also die Gruppenordnung modulo [mm] p^{l} [/mm] ist von der Eulerschen Phi-Funktion [mm] \varphi(p^{l}) =|\{a \in p^{l}| 1 \le a \le p^{l} \wedge ggT(a,p^{l})=1\}| [/mm]  gegeben.

[mm] \varphi(p^{l})=\varphi(p)*...*\varphi(p) [/mm] = [mm] (p-1)^{l} [/mm]
Ordnung w = [mm] (p-1)^{l} [/mm] = Ordnung [mm] \IZ_{p^{l}}^{\*} [/mm]

Ordnung [mm] \IZ_{2p^{l}} [/mm] = [mm] \varphi(2p^{l})=\varphi(2)*\varphi(p^{l})=1*(p-1)^{l} [/mm]

Kann man dann nicht jetzt einfach sagen: Da gilt ord [mm] \IZ_{2p^{l}}^{\*}=ord \IZ_{p^{l}}^{\*}=ord [/mm] w [mm] \Rightarrow [/mm] w auch Primitivwurzel mod [mm] 2p^{l} [/mm]

LG

Bezug
                                                        
Bezug
Primitivwurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 Di 17.12.2013
Autor: Schadowmaster

Hmm, leider nochmal daneben:
[mm] $\phi(ab) [/mm] = [mm] \phi(a)\phi(b)$ [/mm] gilt nur wenn $a$ und $b$ teilerfremd sind.
In diesem Fall gilt [mm] $\phi(p^l) =p^l-p^{l-1} [/mm] = [mm] p^{l-1}(p-1)$. [/mm]

Und nur weil die Gruppen gleiche Ordnung haben muss das noch nicht gelten, $w$ kann ja modulo [mm] $p^l$ [/mm] was anderes sein als modulo [mm] $2p^l$. [/mm]
Hier ist also - mit der richtigen Gruppenordnung - noch ein wenig Arbeit zu leisten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de