www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Primteiler
Primteiler < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primteiler: modulo?
Status: (Frage) beantwortet Status 
Datum: 23:35 Sa 05.01.2008
Autor: Ole-Wahn

Aufgabe
Sei $n>1$ ungerade. Beweise:
[mm] $$\exists [/mm] x,y [mm] \in \IN:~\frac{4}{n}=\frac{1}{x}+\frac{1}{y}~\Leftrightarrow~n~hat~Primteiler~~p\equiv [/mm] 3~(mod~4)$$

Hallo,

bei dieser Aufgabe fehlt mir, so glaube ich, der richtige Ansatz. Also mit der Aussage auf der rechten Seite, kann ich so gut wie nichts anfangen, weil mir ja nur bekannt ist, dass einer der Primteiler kongruent 3 mod 4 ist. Ich weiß nicht wie ich daraus eine Gleichung basteln kann! Fallunterscheidung??

Die Hinrichtung raff ich auch nicht ganz. Man kann ja die Gleichung umstellen nach n und dann was mit Modulo-Rechnung machen, aber ich komm da einfach zu nichts Gescheitem, hehe.

VIelen Dank für eure Hilfe,

Ole

        
Bezug
Primteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 05:17 So 06.01.2008
Autor: Zneques

Hi,

Also erstmal [mm] "\Leftarrow", [/mm] da es leichter ist.
Dazu betrachtest du am besten zuerst nur [mm] n=p\equiv [/mm] 3 mod 4.
Somit n=4*k+3, dann gilt :
[mm] \bruch{4}{4k+3}=\bruch{1}{k+1}+\bruch{1}{(4k+3)(k+1)} \Rightarrow [/mm] o.k.
und für [mm] n_2=n*l, (l\in\IN) [/mm] eine bel. Zahl mit Primteiler p, diese Gleichung einfach mit [mm] \bruch{1}{l} [/mm] erweitern

Nun [mm] "\Rightarrow" [/mm]
es gibt 2 Möglichkeiten für n ungerade:
1.) n=4k+3
dann ist [mm] n=p\equiv [/mm] 3 mod 4
2.) n=4k+1
dann ist
[mm] \bruch{4}{4k+1}=\bruch{1}{k+1+m}+\bruch{3+4m}{(k+1+m)(4k+1)} [/mm]
Der 2. Bruch läßt sich nur kürzen, wenn die Bedingung erfüllt ist [mm] (k\equiv [/mm] 2 mod 3 und m=0???).
Warum genau sehe ich gerade nicht. Aber ich will ja auch nicht zu viel verraten. Frag nochmal nach, wenn du nicht drauf kommst.

Ciao.

Bezug
                
Bezug
Primteiler: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:08 So 06.01.2008
Autor: Ole-Wahn

Erstmal danke, die Rückrichtung funktioniert ja so prima!!

Allerdings muss ich für [mm] $\Leftrightarrow$ [/mm] mehr tun oder? Angenommen, [mm] $n=p\equiv [/mm] 3 ~(mod~4)$ und $p [mm] \in \IP$, [/mm] dann sind wir fertig. Ist $n [mm] \notin \IP$, [/mm] aber [mm] $n\equiv [/mm] 3 ~(mod~4)$, dann ex. $p [mm] \in \IP, ~p\equiv [/mm] 3 ~(mod~4)$ und $p | n$. Stimmt das immer?

Was du zum Fall $n=4k+1$ schreibst, verstehe ich nicht wirklich. Wie kommst du auf  diese Zerlegung? Und warum folgt daraus die geforderte Primteilereigenschaft?

Danke,

Ole

Bezug
                        
Bezug
Primteiler: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:44 Mo 14.01.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de