www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Primzahlprodukt
Primzahlprodukt < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primzahlprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:20 So 11.08.2013
Autor: wauwau

Aufgabe
Für welche k > 2 gibt es Primzahlen [mm] $p_1,p_2,...,p_k$ [/mm] und eine positive ganze Zahl $n$, sodass
[mm] $p_1p_2...p_k-(p_1-1)(p_2-1)...(p_k-1)$ [/mm] = [mm] n^2 [/mm]

Für k=2, was aber ausgenommen ist gibts Lösungen...
Ich habe den Verdacht entweder es gibt für alle k>2 Lösungen oder für kein k>2

        
Bezug
Primzahlprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 So 11.08.2013
Autor: Salamence

Für $ k=3 $ gibt es jedenfalls die Lösung $  (2,2,5) $.

Bezug
                
Bezug
Primzahlprodukt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:25 So 11.08.2013
Autor: felixf

Moin!

> Für [mm]k=3[/mm] gibt es jedenfalls die Lösung [mm](2,2,5) [/mm].  

Es gibt auch noch $(3, 5, 23)$. Da sind sogar alle drei Primzahlen verschieden und alle sind ungerade. Weitere Werte fuer [mm] $p_3$ [/mm] bei [mm] $p_1 [/mm] = 3$, [mm] $p_2 [/mm] = 5$ sind [mm] $p_3 [/mm] = 31$, [mm] $p_3 [/mm] = 103$, [mm] $p_3 [/mm] = 239$, [mm] $p_3 [/mm] = 263$, [mm] $p_3 [/mm] = 431$, [mm] $p_3 [/mm] = 463$. So selten kommt das also gar nicht vor...

LG Felix



Bezug
                        
Bezug
Primzahlprodukt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:46 Mo 12.08.2013
Autor: wauwau

Ok für k=3 gibts also Lösungen.
Aber wie schauts für k=4,5...... aus?
Kann man beweisen, dass es für alle k immer eine Lösung gibt?

Bezug
                                
Bezug
Primzahlprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 14:29 Mo 12.08.2013
Autor: felixf

Moin!

> Ok für k=3 gibts also Lösungen.
>  Aber wie schauts für k=4,5...... aus?

$k = 4$: 3 5 17 503

$k = 5$: 29 47 179 389 733

$k = 6$: 3 5 7 17 47 383

Im [a]Anhang ist ein kleines Programm mit dem man weitersuchen kann. Bei $k = 7$ und $k = 8$ hab ich es nach 84 Minuten abgebrochen, es hatte bis dahin noch nichts gefunden. Aber mit genügend geht das sicher auch...

(Eine andere Enumeration würde das sicher beschleunigen, wenn man z.B. nach [mm] $\max [/mm] A$ + lexikographisch enumerieren würde...)

>  Kann man beweisen, dass es für alle k immer eine Lösung
> gibt?

Vielleicht schon.

LG Felix



Dateianhänge:
Anhang Nr. 1 (Typ: py) [nicht öffentlich]
Bezug
                                        
Bezug
Primzahlprodukt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:21 Mo 12.08.2013
Autor: felixf

Moin!

> > Ok für k=3 gibts also Lösungen.
>  >  Aber wie schauts für k=4,5...... aus?
>  
> [mm]k = 4[/mm]: 3 5 17 503
>  
> [mm]k = 5[/mm]: 29 47 179 389 733
>  
> [mm]k = 6[/mm]: 3 5 7 17 47 383

Eine etwas [a]optimierte Version des Programmes (im wesentlichen die neue Enumeration) hat noch folgendes geliefert:

$k = 7$: 5 7 13 19 43 53 67

$k = 8$: 7 23 29 47 59 101 109 137

$k = 9$: 7 17 19 23 59 61 97 113 157

LG Felix


Dateianhänge:
Anhang Nr. 1 (Typ: py) [nicht öffentlich]
Bezug
                                
Bezug
Primzahlprodukt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Di 27.08.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de