www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Problem mit Lin. Abb.
Problem mit Lin. Abb. < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Problem mit Lin. Abb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:39 Di 25.11.2008
Autor: Martin20

Aufgabe
Sei
F : V -> V eine lineare Abbildung mit [mm] (F^2 [/mm] :=)F [mm] \circ [/mm] F = F und V ein K-Vektorraum.
Zeigen Sie, dass es Untervektorräume U,W von V gibt mit V = U [mm] \oplus [/mm] W und F(W) = 0 , F(u) = u für alle u [mm] \in [/mm] U.

Hallo zusammen,

leider habe ich bei der obigen Aufgabe einige Schwierigkeiten...

Also ich weiß dass der Schnitt von U und W Null ist
und dass somit U und W V aufspannen.

Aber ich verstehe die Verknüpfung überhaupt nicht
und ich habe auch keine Ahnung, was F(W) = 0 in diesem Zusammenhang  bedeutet. Außerdem ist mir nicht klar, wie ich die Existenz von U und W zeigen soll.

Danke für eure Hilfe!

Gruß Martin

        
Bezug
Problem mit Lin. Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Di 25.11.2008
Autor: angela.h.b.


> Sei
> F : V -> V eine lineare Abbildung mit [mm](F^2[/mm] :=)F [mm]\circ[/mm] F = F
> und V ein K-Vektorraum.
>  Zeigen Sie, dass es Untervektorräume U,W von V gibt mit V
> = U [mm]\oplus[/mm] W und F(W) = 0 , F(u) = u für alle u [mm]\in[/mm] U.
>  
> Hallo zusammen,
>  
> leider habe ich bei der obigen Aufgabe einige
> Schwierigkeiten...
>  
> Also ich weiß dass der Schnitt von U und W Null ist
>  und dass somit U und W V aufspannen.
>  
> Aber ich verstehe die Verknüpfung überhaupt nicht
>  und ich habe auch keine Ahnung, was F(W) = 0 in diesem
> Zusammenhang  bedeutet. Außerdem ist mir nicht klar, wie
> ich die Existenz von U und W zeigen soll.

Hallo,

vorgegeben ist Dir ein lineare Abbildung  [mm] F:V\to [/mm] V,  welche  die Eigenschaft hat, daß [mm] F=F\circ [/mm] F ist.

Es ist also für jedes [mm] v\in [/mm] V    F(v)=F(F(v)).

Du sollst nun zeigen, daß Du zwei untervektorräume U und W findest, so daß V die direkte Summe von U und W ist (das ist nichts besonderes), und die UVRe U und W sollen gewisse Eigenschaften haben:

Es soll sein F(W)=0, das bedeutet    [mm] W\subseteq [/mm] KernF,

und wenn man die Abbildung F eingeschränkt auf U betrachtet, ist es die identische Abbildung.


Ein Beispiel für solch eine funktion F wäre im [mm] \IR^3 [/mm] die Projektion auf die xy-Ebene, also [mm] F(\vektor{x\\y\\z})=\vektor{x\\y\\0}. [/mm]


Nun muß man sich fragen, wie man zu den Unterräumen kommt.

Naja, weil ja [mm] W\subseteq [/mm] KernF sein soll, könnte man ja mal einen Versuchsballon starten und W:=KernF wählen.

Vielleicht überlegst Du jetzt mal ein bißchen allein weiter.

Gruß v. Angela

Bezug
                
Bezug
Problem mit Lin. Abb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:16 Di 25.11.2008
Autor: Martin20

Hallo,

danke schon mal für deine Mühen.

Ich habe mir jetzt mal was dazu überlegt aber es könnte sein dass es ziemlich falsch ist....

Naja, also wenn ich nun W definiere als Ker(F) kann ich dann einfach U als Im(F) definieren?

Grüße Martin

Bezug
                        
Bezug
Problem mit Lin. Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 22:33 Di 25.11.2008
Autor: leduart

Hallo
warum fragst du und pruefst nicht einfach ob diesees U die Bedingung erfuellt?
Gruss leduart

Bezug
                                
Bezug
Problem mit Lin. Abb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:43 Di 25.11.2008
Autor: Martin20

Hm ja...ich durchschau es irgendwie noch nicht so...

Also ich weiß auf jeden Fall, dass Im(F) ein UVR ist
aber ich weiß nicht ob damit U [mm] \oplus [/mm] W = V erfüllt ist.

Gruß Martin

Bezug
                                        
Bezug
Problem mit Lin. Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:03 Di 25.11.2008
Autor: leduart

Hallo
a) du musst zuerst ueberpruefen ob fuer alle u gilt f(u)=u
b) welche Dimension hat K und I zusammen?
oder kannst du jedes v als Linearkomb von u und k schreiben ?
Gruss leduart

Bezug
                                                
Bezug
Problem mit Lin. Abb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:24 Di 25.11.2008
Autor: Martin20

Hi,

ich glaube, dass die Dimension des Bildes + die Dimension des Kerns gleich der Dimension von V sein und meiner Meinung nach gilt auch für alle u f(u) = u.
Aber ich weiß nicht genau, wie ich v als Linearkombination von u und k schreiben kann.

Stimmen meine ersten zwei Annahmen überhaupt? Falls ja wäre es nett wenn mir jemand für das dritte einen Tipp geben könnte.

Gruß Martin

Bezug
                                                        
Bezug
Problem mit Lin. Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 00:08 Mi 26.11.2008
Autor: leduart

Hallo
ein vektorraum der in V leigt und die dimenson von V hat ist V!  Hattet ihr denn den Dimensionssatz?
sonst nimm an es gibt ein v das nicht in I und nicht in K liegt. wende f darauf an. was stellst du fest?
dass f(u) =u ist solst du nicht glauben sondern zeigen, aus der Def von f!
Gruss leduart


Bezug
                                                                
Bezug
Problem mit Lin. Abb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:08 Mi 26.11.2008
Autor: Martin20

Hallo,

danke!

also den Satz hatten wir schon, aber es gilt ja auch dass ich wenn ich irgendein v nehme und sage das liegt nicht in I oder K, dann gilt ja F(F(v))=F(v) und das müsste doch eigentlich wieder im Bild liegen,was ein Widerspruch zur Annahme wäre und ich somit sagen kann dass alle v entweder in I oder K liegen oder?

Jetzt bleibt noch zu zeigen, dass F(u) = u. Wie meinst du das genau, dass ich das mit der Definition von F zeigen soll?

So?:
u Element V weil U UVR

zz.: F(u)=u

nach Def gilt: F(F(u)) = F(u) [mm] \Rightarrow [/mm] mit der Linearität von F: F(u)= u

stimmt wohl eher nicht oder?

Reicht das dann alles?Wenn ich halt noch dazu zeige dass Im und Kern UVR sind?

Vielen Dank und viele Grüße


Bezug
                                                                        
Bezug
Problem mit Lin. Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 Mi 26.11.2008
Autor: leduart

Hallo
ein wenig durcheinander ist hier.
[mm] u\in [/mm] I heisst u=f(v)
wegen f(f(v))=f(v)=u
d.h. alle u aus I erfuellen die Bedingung von U, also ist I der gesuchte Unterraum.
bei einer Abb. V nach V ergibt K+I=V
wegen des dimensionssatzes.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de