www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Problem mit Vereinigung
Problem mit Vereinigung < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Problem mit Vereinigung: richtige Anwendung?
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:30 So 17.06.2012
Autor: bandchef

Ich hab hier diesen Ausdruck rausbekommen:

[mm] $\{a\}^\star \cdot \{b\}^\star [/mm] = [mm] \{ a^i \cdot b^j | i,j \in \mathbb N_0 \}$ [/mm]

[mm] $\Leftrightarrow \bigcup_{i \in \mathbb N_0} a^i \cdot \bigcup_{j \in \mathbb N_0} b^j [/mm] = [mm] \{ a^i \cdot b^j | i,j \in \mathbb N_0 \}$ [/mm]

[mm] $\Leftrightarrow \bigcup_{i,j \in \mathbb N_0} \left( a^i \cdot b^j \right) [/mm] = [mm] \{ a^i \cdot b^j | i,j \in \mathbb N_0 \}$ [/mm]


Erstens: Darf man das so?

Zweitens: Wie geht's hier nun weiter, um die Gleichheit der beiden Seiten festzustellen? Der Malpunkt ist übrigens die Mengen-Konkatenation und das Sternchen die Kleene'sche-Hülle! PS: Die zweite Zeile kommt von meiner Lösung und ist so definitiv richtig!

Ich hoff ihr könnt mir weiterhelfen! Danke!

        
Bezug
Problem mit Vereinigung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 So 17.06.2012
Autor: leduart

Hallo
so allgemein ist das sicher sinnlos.
was ist denn {a}? normalerweise die menge, die aus dem element a besteht, dann müsste man noch wissen was a ist. eine reelle zahl, ein dreieck, eine kuh?
2. kann man vielleicht eine Multiplikation zwischen Mengen definieren, so wie das in der ersten zeile steht ist das aber sehr eigenartig sollen die i,j Hochzahlen sein oder indices?, Hochzahlen machen für mich keinen sinn, Indices höchstens, falls {a} ein Symbol für [mm] {a_i|i\in \IN_0} [/mm]
dann ist aber die zweite Zeile dasselbe wie die erste.
Kannst du den Zusammenhang sagen, aus dem diese Multiplikation von mengen kommt?
gruss leduart


Bezug
                
Bezug
Problem mit Vereinigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:36 Mo 18.06.2012
Autor: bandchef

Oh, Entschuldige bitte! Ich hab wirklich vergessen zu schreiben, dass es sich hier um Sprachen handelt von denen ich die Gleichheit beweisen soll. Ich hab die Aufgabe aber mittlerweile gelöst:

[mm] $\{a\}^\star \cdot \{b\}^\star [/mm] = [mm] \{a^i \cdot b^j | i,j \in \mathbb N_0\} [/mm]

[mm] \Leftrightarrow \bigcup_{i \in \mathbb N_0}\left( \{a\}^i \right) \cdot \bigcup_{i \in \mathbb N_0}\left( \{b\}^j \right) [/mm] = [mm] \{a^i \cdot b^j | i,j \in \mathbb N_0\} [/mm]

[mm] \Leftrightarrow \{a^i | i \in \mathbb N_0\} \cdot \{b^j | j \in \mathbb N_0\} [/mm] = [mm] \{a^i \cdot b^j | i,j \in \mathbb N_0\} [/mm]

[mm] \Leftrightarrow \{a^i \cdot b^j | i,j \in \mathbb N_0\} \cdot \{a^i \cdot b^j | i,j \in \mathbb N_0\}$ [/mm]




Ich hätt zum gleichen Aufgabentyp aber noch eine Aufgabe, von der ich leider auch nicht weiß, ob das so passt:

[mm] $\left( \{ a \}^\star \cdot \{b\}^\star \right)^\star [/mm] = [mm] \left( \{a,b\}^2 \right)^\star [/mm]

[mm] \Leftrightarrow \bigcup_{k \in \mathbb N_0} \left( \left\{ \bigcup_{i \in \mathbb N_0} \left( \{a\}^i \right) \cdot \bigcup_{j \in \mathbb N_0} \left( \{b\}^j\right) \right\}^k \right) [/mm] = [mm] \bigcup_{l \in \mathbb N} \left( \left\{\{a,b\}^2\right\}^l \right) [/mm]

[mm] \Leftrightarrow \bigcup_{k \in \mathbb N_0} \left( \left\{ \{ a^i \cdot b^j | i,j \in \mathbb N_0\} \right\}^k \right) [/mm] = [mm] \left\{ \left\{ \left\{ a,b \right\}^2 \right\}^l |l \in \mathbb N_0 \right\} [/mm]

[mm] \Leftrightarrow \left\{\{ a^i \cdot b^j \}^k| i,j,k \in \mathbb N_0\right\} [/mm] = [mm] \left\{ \left\{ a,b \right\}^{2l} |l \in \mathbb N_0 \right\}$ [/mm]



Bitte gib mir auch bescheid, wenn du mir nicht helfen kannst! Danke :-)

Bezug
                        
Bezug
Problem mit Vereinigung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Mo 18.06.2012
Autor: felixf

Moin!

> Oh, Entschuldige bitte! Ich hab wirklich vergessen zu
> schreiben, dass es sich hier um Sprachen handelt von denen

In dem Fall gehoert die Diskussion in's Forum ueber formale Sprachen in der Informatik.

> Ich hätt zum gleichen Aufgabentyp aber noch eine Aufgabe,
> von der ich leider auch nicht weiß, ob das so passt:
>  
> [mm]$\left( \{ a \}^\star \cdot \{b\}^\star \right)^\star[/mm] =
> [mm]\left( \{a,b\}^2 \right)^\star[/mm]

Das stimmt so nicht. In der rechten Sprache hat jedes Wort die Laenge $2 k$ fuer ein $k [mm] \in \IN_0$. [/mm] In der linken Sprache gibt's auch Woerter ungerader Laenge.

LG Felix


Bezug
                                
Bezug
Problem mit Vereinigung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:07 Mo 18.06.2012
Autor: bandchef

Ok. Das stimmt also so nicht. Wie schreib ich das dann formal auf? Kannst du mir da ein bisschen helfen?

Bezug
                                        
Bezug
Problem mit Vereinigung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mi 20.06.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de