www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Problem mit Zerlegung
Problem mit Zerlegung < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Problem mit Zerlegung: Funktionsdiskussion ohne DR
Status: (Frage) beantwortet Status 
Datum: 19:26 So 31.10.2010
Autor: accompany

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo liebes Forenteam:

Ich habe ein Problem mit folgender Funktion: [mm] (x^3+2x^2-7x+4)/(x3-5x^2-2x+6) [/mm]

Um die Lücken usw. zu finden muss ich die Funktion zerlegen und eventuell teile kürzen. Ich weiß aber nicht, wie ich Zähler und Nenner zerlegen soll, falls es überhaupt möglich ist.

Danke im Voraus

        
Bezug
Problem mit Zerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 So 31.10.2010
Autor: reverend

Hallo accompany,

lange her, dass Du hier warst. Wie schaffst Du es bloß, Dich nach so langer Zeit an Dein Passwort zu erinnern, vom Benutzernamen ganz zu schweigen? ;-)

> Ich habe ein Problem mit folgender Funktion:
> [mm](x^3+2x^2-7x+4)/(x3-5x^2-2x+6)[/mm]
>  
> Um die Lücken usw. zu finden muss ich die Funktion
> zerlegen und eventuell teile kürzen. Ich weiß aber nicht,
> wie ich Zähler und Nenner zerlegen soll, falls es
> überhaupt möglich ist.

Für Polynome dritten Grades gibt es die []Cardanischen Formeln, die allerdings recht unhandlich sind.
In den meisten Übungsaufgaben sind solche Polynome aber so angelegt, dass sich eine Nullstelle [mm] x_N [/mm] des Polynoms leicht erraten (bzw. ausprobieren) lässt. Dann kann man durch [mm] (x-x_N) [/mm] teilen und so das Polynom dritten Grades in ein Produkt aus einem Polynom ersten und einem zweiten Grades.

Bei Polynomen mit ganzzahligen Koeffizienten (wie hier) können Nullstellen nur bei einem Teiler des absoluten Gliedes vorliegen, ggf. auch negativ.

Das Zählerpolynom hat das absolute Glied 4, Nullstellen können also nur bei [mm] \pm1, \pm2 [/mm] oder [mm] \pm4 [/mm] vorliegen. Und weil es einfacher zu rechnen ist, fängt man ja meist mit [mm] \pm1 [/mm] an...
Beim Nennerpolynom sind [mm] \pm1, \pm2, \pm3 [/mm] und [mm] \pm6 [/mm] zu prüfen, das ist ja noch überschaubar, zumal man gar nicht so weit kommt. ;-)

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de