www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Probleme bei Aufgabe
Probleme bei Aufgabe < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Probleme bei Aufgabe: Berechnungen
Status: (Frage) beantwortet Status 
Datum: 23:57 Mi 17.11.2004
Autor: adonis1981

Hallo!

Habe ein großes Problem mit 2 StochastiK Aufgaben.
Komme einfach nicht dahinter.

Die Aufgaben:

1)
Aus der Menge  [mm] \{1,2,...,100 \} [/mm] werden 2 Zahlen zufällig herausgezogen.
Wenn die kleinere der beiden [mm] \le [/mm] 20 ist, mit welcher WSK ist dann die größere [mm] \ge [/mm] 80?

2)
Es geht um das Vorliegen der Krankheit A:
Falls A vorliegt, liefert ein Test 99% aller Fälle einen positivern Befund.
Ebenfalls führt der Test in 99% aller Fälle, in denen A nicht vorliegt zu einem negativen Ergebnis.
Die Häufigkeit von A ist stark vom Alter abhängig:
Mit 25 Jahren ist im Mittel nur 1 von 1250 betroffen; mit 43 jedoch schon jeder fünfzigste.

WSK berechnen, dass A vorliegt, falls der Test einen positiven bzw. negativen Befund liefert (für beide Altersklassen).


Kann mir jemand bei den Aufgaben weiterhelfen?
Vielen Dank schon mal im Voraus.
MfG
Mario

        
Bezug
Probleme bei Aufgabe: zur ersten Aufgabe
Status: (Antwort) fertig Status 
Datum: 07:55 Fr 19.11.2004
Autor: Stefan

Hallo Mario!

Zur ersten Aufgabe:

Es gilt:

[mm] $P(\max\{X,Y\}\ge 80\, \, \min\{X,Y\} \le [/mm] 20)$

$= [mm] \frac{P(\max\{X,Y\} \ge 80,\, \min\{X,Y\} \le 20)}{P(\min \{X,Y\} \le 20)}$ [/mm]

$= [mm] \frac{2 \cdot \frac{1}{5} \cdot \frac{1}{5}}{1 - \frac{4}{5}\cdot {4}{5}}$ [/mm]

$= [mm] \frac{\frac{2}{25}}{\frac{9}{25}}$ [/mm]

$= [mm] \frac{2}{9}$. [/mm]

Liebe Grüße
Stefan

Bezug
        
Bezug
Probleme bei Aufgabe: zur zweiten Aufgabe
Status: (Antwort) fertig Status 
Datum: 08:01 Fr 19.11.2004
Autor: Stefan

Hallo!

Wir haben:

$P(+|A) = 0.99$,

[mm] $P(-|\neg [/mm] A)=0.99$    [mm] $\Rightarrow \quad P(+|\neg [/mm] A)=0.01$

$P(a) = p$    (altersabhängig)     [mm] $\Rightarrow \quad P(\neg [/mm] A)=1-p$.

Nun berechnen wir die erste gesuchte Wahrscheinlichkeit mit der Formel von Bayes:

$P(A|+) = [mm] \frac{P(+|A) \cdot P(A)}{P(+|A) \cdot P(A) + P(+ |\neg A) \cdot P(\neg A)}$. [/mm]

Das Einsetzen ($p$ ist altersabhängig) und die Übertragung auf die andere gesuchte Wahrscheinlkichkeit solltest du selber hinbekommen. ;-)

Liebe Grüße
Stefan

Bezug
                
Bezug
Probleme bei Aufgabe: Dankeschön!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:34 Sa 20.11.2004
Autor: adonis1981

Vielen Dank für die nette Hilfe!
MfG
Mario

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de