www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Probleme mit der 2. Ableitung
Probleme mit der 2. Ableitung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Probleme mit der 2. Ableitung: Gedankenstoss
Status: (Frage) beantwortet Status 
Datum: 14:14 Do 27.03.2008
Autor: denisjestmikusz

Aufgabe
Funktionsschar [mm] f_{k} [/mm] mit [mm] f_{k} [/mm] (x) = [mm] \bruch{5e^{x}}{e^{x} +k} [/mm] , k [mm] \in \IR [/mm] >0

Aufgabe:

Zeigen Sie, dass jeder Graph von [mm] f_{k} [/mm] genau einen Wendepunkt [mm] W_{k} [/mm] hat. Bestimmen Sie seine Koordinaten.

Mir ist klar, dass mein hinreichendes Kriterium [mm] f_{k}''(x)=0 [/mm] ^ [mm] f_{k}'''(x)<> [/mm] 0.

Fuer die erste Ableitung habe ich dieses Ergebnis [mm] f_{k}'(x)=\bruch{5ke^{x}}{(e^{x} +k)^2} [/mm]

So und nun beginnen meine Probleme bei der zweiten Ableitung.
Ich bin bis dahin gekommen: [mm] f_{k}''(x)=\bruch{5ke^{x}*(e^{x} +k)^{2}-5ke^{x}*[e^{x}*2(e^{x}+k)]}{(e^{x} +k)^{3}} [/mm]

Wahrscheinlich habe ich mich da schon verlaufen! Bekommt Ihr da das selbe heraus?

Das habe ich dann umgestaltet zu:

[mm] f_{k}''(x)=\bruch{-5ke^{x}*[(e^{x} +k)^{2}+e^{x}*2(e^{x}+k)]}{(e^{x} +k)^3} [/mm]

So und nun komme ich nicht mehr weiter. Sieht mir irgendwie viel zu wirr aus.

Ueber Eure Tipps wuerde ich mich sehr freuen.

        
Bezug
Probleme mit der 2. Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 Do 27.03.2008
Autor: MathePower

Hallo denisjestmikusz,

> Funktionsschar [mm]f_{k}[/mm] mit [mm]f_{k}[/mm] (x) = [mm]\bruch{5e^{x}}{e^{x} +k}[/mm]
> , k [mm]\in \IR[/mm] >0
>  
> Aufgabe:
>
> Zeigen Sie, dass jeder Graph von [mm]f_{k}[/mm] genau einen
> Wendepunkt [mm]W_{k}[/mm] hat. Bestimmen Sie seine Koordinaten.
>  Mir ist klar, dass mein hinreichendes Kriterium
> [mm]f_{k}''(x)=0[/mm] ^ [mm]f_{k}'''(x)<>[/mm] 0.
>  
> Fuer die erste Ableitung habe ich dieses Ergebnis
> [mm]f_{k}'(x)=\bruch{5ke^{x}}{(e^{x} +k)^2}[/mm]

[ok]

>  
> So und nun beginnen meine Probleme bei der zweiten
> Ableitung.
>  Ich bin bis dahin gekommen:
> [mm]f_{k}''(x)=\bruch{5ke^{x}*(e^{x} +k)^{2}-5ke^{x}*[e^{x}*2(e^{x}+k)]}{(e^{x} +k)^{3}}[/mm]
>  
> Wahrscheinlich habe ich mich da schon verlaufen! Bekommt
> Ihr da das selbe heraus?

Bis auf den Nenner, dieser liegt in der 4. Potenz vor.

>  
> Das habe ich dann umgestaltet zu:
>  
> [mm]f_{k}''(x)=\bruch{-5ke^{x}*[(e^{x} +k)^{2}+e^{x}*2(e^{x}+k)]}{(e^{x} +k)^3}[/mm]

Da hat der Fehlerteufel zugeschlagen:

[mm]f_{k}''(x)=\bruch{-5ke^{x}*[\red{-}(e^{x} +k)^{2}+e^{x}*2(e^{x}+k)]}{(e^{x} +k)^{\red{4}}}[/mm]

>  
> So und nun komme ich nicht mehr weiter. Sieht mir irgendwie
> viel zu wirr aus.

Da kann man noch [mm]e^{x}+k[/mm] ausklammern.

>  
> Ueber Eure Tipps wuerde ich mich sehr freuen.

Gruß
MathePower

Bezug
                
Bezug
Probleme mit der 2. Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:28 Do 27.03.2008
Autor: denisjestmikusz

Hallo MathePower,


> > Das habe ich dann umgestaltet zu:
>  >  
> > [mm]f_{k}''(x)=\bruch{-5ke^{x}*[(e^{x} +k)^{2}+e^{x}*2(e^{x}+k)]}{(e^{x} +k)^3}[/mm]
>  
> Da hat der Fehlerteufel zugeschlagen:
>  
> [mm]f_{k}''(x)=\bruch{-5ke^{x}*[\red{-}(e^{x} +k)^{2}+e^{x}*2(e^{x}+k)]}{(e^{x} +k)^{\red{4}}}[/mm]
>  

Na klar, da ist mein Fehler. Ich habe doch [mm] [(e^{x} +k)^{2}]^{2} [/mm] im Nenner. Die Exponenten 2+2 und dann habe ich
[mm] (e^{x} +k)^{4} [/mm]


> >  

> > So und nun komme ich nicht mehr weiter. Sieht mir irgendwie
> > viel zu wirr aus.
>  
> Da kann man noch [mm]e^{x}+k[/mm] ausklammern.
>  
> >  

> > Ueber Eure Tipps wuerde ich mich sehr freuen.
>
> Gruß
>  MathePower


Danke fuer Deine Hilfe.

Denis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de