www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Produkt reeller Polynome
Produkt reeller Polynome < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produkt reeller Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:26 Mi 16.01.2008
Autor: lotusbluete

Aufgabe
Zerlege [mm] x^{8}+x^{4}+1 [/mm] so weit wie möglich in ein Produkt reeler Polynome.

Eigentlich würde ich gerne Partialbruchzerlegung machen. Geht aber wohl nicht. Deshalb habe ich mal angefangen und [mm] x^{4}=z [/mm] substituiert.
z²+z+1
-> z{1}=-0,5+j0,866
   z{2}=-0,5-j0,866
dann wollte ich rücksubstituieren...
[mm] x_{1...4}=[-0,5+0,866]^{4} [/mm]
mit Hilfe von [mm] (a+b)^{4}=a^{4}+4a³b+6a²b²+4ab³+b^{4} [/mm]
kam ich auf [mm] \wurzel{-\bruch{3}{4}}-0,5 [/mm]
aber das ist ja genau meiné Ausgangssituation. Hätte ich mir das bis dahin sparen können, oder ist das zufall?
Für eure Hilfe wäre ich sehr dankbar


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Produkt reeller Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Mi 16.01.2008
Autor: leduart

Hallo
> Zerlege [mm]x^{8}+x^{4}+1[/mm] so weit wie möglich in ein Produkt
> reeler Polynome.
>  Eigentlich würde ich gerne Partialbruchzerlegung machen.
> Geht aber wohl nicht. Deshalb habe ich mal angefangen und
> [mm]x^{4}=z[/mm] substituiert.
>  z²+z+1
>  -> z{1}=-0,5+j0,866

>     z{2}=-0,5-j0,866

Damit weisst du dass das polynom durch (z-z1)*(z-z2) teilbar ist. das ist ein reelles Polynom, also ausrechnen und dadurch dividieren.
dass du keinen linearen Teil abspalten kannst ist klar, weil das reelle Pol. sicher keine Nullstellen hat.
der Rest ist sicher sinnlos, nur noch die Wurzeln aus den Lösungen sind interessant. ob du noch ein zweites quadratisches Polynom abspalten kannst, wenn du noch zwei konjugiert komplexe Lösungen hast.
Gruss leduart



Bezug
                
Bezug
Produkt reeller Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 Sa 19.01.2008
Autor: lotusbluete

Es tut mir sehr leid, aber wie geht es weiter? Ich weiß es einfach nicht, habe viel gelesen, aber nichts gefunden was ich hier anwenden könnte.

Bezug
                        
Bezug
Produkt reeller Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 Sa 19.01.2008
Autor: leduart

Hallo
Ich hatte doch gesagt, du sollst durch (z-z1)*(z-z2) dividieren. hast du das gemacht?
Gruss leduart

Bezug
                                
Bezug
Produkt reeller Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 So 20.01.2008
Autor: lotusbluete

Wenn ich dich richtig verstanden habe soll ich [mm] \bruch{z²+z+1}{(z-z_{1})(z-z_{2})} [/mm] ausrechnen.
Ich habe mal aufgelöst. [mm] \bruch{z²+z+1}{z²-z(z_{1}+z_{2})+z_{1}*z_{2}} [/mm] und dann? wieter geht es bei mir nicht

Bezug
                                        
Bezug
Produkt reeller Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 So 20.01.2008
Autor: schachuzipus

Hallo lotusblüte,

dein Ausgangspolynom [mm] $x^8+x^4+1$ [/mm] hat 8 komplexe Nullstellen [mm] $x_1,x_2,...x_8$ [/mm]

Das sind 4 Paare komplex konjuguerter Zahlen, also [mm] $x_1,\overline{x}_1$ [/mm] und [mm] $x_2,\overline{x}_2$ [/mm] und [mm] $x_3,\overline{x}_3$ [/mm] und [mm] $x_4,\overline{x}_4$ [/mm]

Die rechne zuerst einmal alle aus

Nun ist [mm] $(x-x_i)(x-\overline{x}_i)$ [/mm] jeweils ein reelles Poynom 2ten Grades.

Das rechne konkret aus und dividiere dein Ausgangspolynom dadurch

Ich mache das mal für ein Paar Nullstellen:

Es sind u.a. [mm] $x_1=-\frac{\sqrt{3}}{2}+\frac{1}{2}i$ [/mm] und [mm] $\overline{x}_1=-\frac{\sqrt{3}}{2}-\frac{1}{2}i$ [/mm] ein Paar komplexer konjuguerter NST deines Ausgangspolynoms

Dann ist [mm] $(x-x_1)(x-\overline{x}_1)=\left(x+\frac{\sqrt{3}}{2}-\frac{1}{2}i\right)\left(x+\frac{\sqrt{3}}{2}+\frac{1}{2}i\right)=x^2+\sqrt{3}x+1$ [/mm]

ein reelles Polynom 2ten Grades

Dann berechne [mm] $(x^8-x^4+1):(x^2+\sqrt{3}x+1)=x^6-\sqrt{3}x^5+2x^4-\sqrt{3}x^3+2x^2-\sqrt{3}x+1=:q(x)$ [/mm]

Nun rechne jeweils für die anderen 3 Paare komplex konjugierter Nullstellen das entsprechende reelle Polynom 2ten Grades aus und spalte es sukzessive ab - zuerst vom "neuen" Poylnom $q(x)$, dann bekommst du ein Polynom $r(x)$ 4ten Grades usw.

Schlussendlich hast du eine Zerlegung deines Ausgangspolynoms als Produkt 4 reeller Polynome 2ten Grades


Gruß

schachuzipus



Bezug
                                
Bezug
Produkt reeller Polynome: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:50 So 20.01.2008
Autor: lotusbluete

Wenn ich dich richtig verstanden habe soll ich [mm] \bruch{z²+z+1}{(z-z_{1})(z-z_{2})} [/mm] ausrechnen.
Ich habe mal aufgelöst. [mm] \bruch{z²+z+1}{z²-z(z_{1}+z_{2})+z_{1}*z_{2}} [/mm] und dann? weiter geht es bei mir nicht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de