www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Produktregel
Produktregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produktregel: Hausaufgabe
Status: (Frage) beantwortet Status 
Datum: 16:09 Mo 04.09.2006
Autor: Kristof

Aufgabe
Leiten Sie ab :
a.) f (x) = x* [mm] \wurzel{x} [/mm]
b.) f (x) = x² * [mm] \wurzel{x} [/mm]
c.) f (t) = (3t + 2) * [mm] \wurzel{t} [/mm]
d.) g (t) = (2t²-3) * [mm] \wurzel{t} [/mm]
e.) f (a) = [mm] \wurzel{a}* [/mm] (1 -2a³)
f.) a (t) = [mm] \wurzel{t}* [/mm] (1+t)
g.) f (x) = x* sin (x)
h.) f (x) = (x²+1) * cos(x)
i.) f (x) = (x + k)* [mm] \wurzel{x} [/mm]
j.) f (x) = (kx +1) * sin (x)
k.) f (x) = [mm] \wurzel{x} [/mm] * (x-t)
l.) f (t) = [mm] \wurzel{x} [/mm] * (x-t)

So,
nun sind die Ferien vorbei und Ich bin wieder da ;)
Mit vielen vielen Fragen.

Das letzte Schuljahr habt ihr mir immer super geholfen, wofür ich mich nochmal bedanken wollte. Nun gehts weiter und ich habe mal wieder HA's aufbekommen.

Wäre lieb wenn ihr die Ergebnisse mal nachguckt, ob ich's richtig gerechnet habe.

Bei der ersten Aufgabe mache ich den weg auch mal mit. Bei den anderen schreibe ich einfach nur die Ergebnisse auf.

zu a.)
u'(x)*v(x) + u(x)*v'(x)
Auf die Aufgabe angewand bedeutet das :

f'(x) = [mm] 1*\wurzel{x} [/mm] + [mm] x*\bruch{1}{2*\wurzel{x}} [/mm]

b.)

f'(x) = [mm] 2x*\wurzel{x} [/mm] + [mm] x²*\bruch{1}{2*\wurzel{x}} [/mm]

c.)

f'(x) = 3* [mm] \wurzel{t} [/mm] + (3t+2) [mm] *\bruch{1}{2*\wurzel{t}} [/mm]

d.)

g'(x) = 4t [mm] *\wurzel{t} [/mm] + [mm] (2t²-3)*\bruch{1}{2*\wurzel{t}} [/mm]

e.)

f'(a) = [mm] \bruch{1}{2*\wurzel{a}}* [/mm] (1-2a³) + [mm] \wurzel{a}* [/mm] (-6a²)

f.)

a'(t) =   [mm] \bruch{1}{2*\wurzel{t}}*(1+t) +\wurzel{t} [/mm] +1

g.)

f'(x) = 1 * sin(x) + x * cos(x)

h.)

f'(x) = 2x *cos(x) + (x²+1)*(-sin(x))

i.)

f'(x) = 1* [mm] \wurzel{x} [/mm] + [mm] (x+k)*\bruch{1}{2*\wurzel{x}} [/mm]

j.)

f'(x) = k*sin(x) + (kx+1)*cos(x)

k.)

f'(x) = [mm] \bruch{1}{2*\wurzel{x}}*(x-t) [/mm] + [mm] \wurzel{x}*1 [/mm]

l.)
Hier bin ich mir nicht sicher, habe 2 Lösungen, vielleicht ist ja eine der beiden Richtig. Vielleicht auch beide falsch ;)

f'(t) = [mm] \bruch{1}{2*\wurzel{x}}*(x-t) [/mm] + [mm] \wurzel{x}*(-1) [/mm]

oder die 2. möglichkeit :

f'(t) = (x-t) + [mm] \wurzel{x}*(-1) [/mm]


Naja, vielleicht habe ich's ja verstanden.
Schonmal vielen Dank für's Kontrollieren.

MfG
Kristof

        
Bezug
Produktregel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Mo 04.09.2006
Autor: PStefan

Hi,

sodala, da wartet nun viel Arbeit auf mich: ;-)

ad (a) [ok]

ad (b) [ok]

ad (c) [ok]

ad (d) [ok]

ad (e) [ok], aber es wäre schöner, wenn du [mm] (-6a^{2}) [/mm] auflöst und sofort schreibst: ... - [mm] 6a^{2}*\wurzel{a} [/mm]
aber wie gesagt [ok]

ad (f) [notok]
[mm] a'(t)=\bruch{1}{2*\wurzel{t}}*(1+t)+\wurzel{t} [/mm]
ohne +1 am Schluss!!!!!!!!

ad (g) [ok]

ad (h) [ok] aber wie bereits oben solltest du es anders schreiben

ad (i) [ok]

ad (j) [ok]

ad (k) [ok]

ad (l) [notok]

in diesem Beispiel wird x zur Konstanten! (Differentialrechnung mit mehreren Variablen)  ausmultipliziert hast du ja:
[mm] f(t)=\wurzel{x}*x-\wurzel{x}*t [/mm]

Regel: f(t)=x
f'(t)=0

daher würde ich in diesem Beispiel sagen, dass:
[mm] -\wurzel{x} [/mm] das Ergebnis ist.

Sodala, das war jetzt relativ viel, aber auch eine gute Übung für mich *gg*

Gruß
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de