www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Produktregel Beweis
Produktregel Beweis < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produktregel Beweis: Aufgabe, Tipp
Status: (Frage) beantwortet Status 
Datum: 18:11 Di 28.09.2010
Autor: Phoenix22

Aufgabe
Beweise die Produktregel.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hallo,

ich soll auf nächste Mathestunde die Prodkutregel beweisen und an der Tafel vorführen.

Dazu müsste ich es aber erstmal selber verstehen.

[]Produktregel Beweis

so sollte das aussehen.

also x0 ist einfach irgendein wert? man könnte auch zum beispiel a, b, c usw. stattdessen hinschreiben?

wieso muss man beim 2. schritt + u(x0)*v(x) und - u(x0)*v(x)? was soll das bringen?

was bedeutet dieser limes nochmal?  wir wollen x->x0 machen..das heißt?



        
Bezug
Produktregel Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Di 28.09.2010
Autor: abakus


> Beweise die Produktregel.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  
> Hallo,
>  
> ich soll auf nächste Mathestunde die Prodkutregel beweisen
> und an der Tafel vorführen.
>  
> Dazu müsste ich es aber erstmal selber verstehen.
>  
> []Produktregel Beweis
>  
> so sollte das aussehen.
>  
> also x0 ist einfach irgendein wert? man könnte auch zum
> beispiel a, b, c usw. stattdessen hinschreiben?
>  
> wieso muss man beim 2. schritt + u(x0)*v(x) und -
> u(x0)*v(x)? was soll das bringen?

Damit kannst du den nächsten Schritt durchführen.
Gruß Abakus

>  
> was bedeutet dieser limes nochmal?  wir wollen x->x0
> machen..das heißt?
>  
>  


Bezug
                
Bezug
Produktregel Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Di 28.09.2010
Autor: Phoenix22

Ähm..soll das ein scherz sein? das ist ja wohl keine enrsthafte antwort.

hat jemand vielleicht eine etwas qualifiziertere antwort auf meine fragen..?

Bezug
                        
Bezug
Produktregel Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Di 28.09.2010
Autor: MathePower

Hallo Phoenix22,

> Ähm..soll das ein scherz sein? das ist ja wohl keine
> enrsthafte antwort.
>  
> hat jemand vielleicht eine etwas qualifiziertere antwort
> auf meine fragen..?

> also x0 ist einfach irgendein wert? man könnte auch zum  

> beispiel a, b, c usw. stattdessen hinschreiben?  


Ja, das könnte man.


>    
> wieso muss man beim 2. schritt + u(x0)*v(x) und -  
> u(x0)*v(x)? was soll das bringen?  


Hier addiert man diese "künstliche Null",

[mm]+u(x0)*v(x) - u(x0)*v(x) [/mm]

um auf den Differenzenquotienten von u bzw. v zu kommen.

>    
> was bedeutet dieser limes nochmal?  wir wollen x->x0  
> machen..das heißt?  
>    


Der Limes ist der Grenzübergang für x gegen x0.
Das bedeutet, daß Du das x gegen x0 laufen lässt.


Gruss
MathePower  

Bezug
                                
Bezug
Produktregel Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:23 Di 28.09.2010
Autor: Phoenix22

okay danke =)

und diese künstliche null..wieso nennt man die null? und gibt es für diese künstliche null eine logische erklärung oder kann ich da einfach sagen:

ja man muss einfach die künstliche null hier einsetzten damit das einen sinn ergibt.

und viel mehr gibt es da bei diesem beweis auch nicht zu verstehen bzw. zu erklären oder wie würdet ihr das einer klasse erklären?

Bezug
                                        
Bezug
Produktregel Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Di 28.09.2010
Autor: angela.h.b.


> und diese künstliche null..wieso nennt man die null?

Hallo,

weil es eine aufgepustete Null ist.

Wenn ich etwas addiere und im selben Moment wieder subtrahiere, verändere ich in Wahrheit nichts. Nur optisch.

> und
> gibt es für diese künstliche null eine logische
> erklärung oder kann ich da einfach sagen:
>  
> ja man muss einfach die künstliche null hier einsetzten
> damit das einen sinn ergibt.

Nein, man macht das nicht weil es "einen Sinn ergibt".
Sondern: weil es funktioniert, weil man so den Beweis weiterführen kann.

Die Addition der aufgepusteten Null ist eine gute Idee, die jemand gehabt hat. Woher, wieso und warum spielt keine Rolle. Es zählt, daß es funktioniert.
Du mußt diese Idee nicht selbst haben. Es reicht, wenn Du siehst und akzeptierst, daß man mit dieser Idee den Beweis zu Ende führen kann.

>  
> und viel mehr gibt es da bei diesem beweis auch nicht zu
> verstehen bzw. zu erklären oder wie würdet ihr das einer
> klasse erklären?

Schritt für Schritt.
Überleg Dir bei jedem Schritt, warum er richtig ist und erzähl dies Deiner Klasse.

Gruß v. Angela


Bezug
                                                
Bezug
Produktregel Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 Di 28.09.2010
Autor: Phoenix22

okay super danke =)

noch eine frage..

wie kommt man vom letzten schritt auf die formel?

kann mir das jemand an dem beispiel [mm] \bruch{u(x)-u(x0)}{x-x0} [/mm] zeigen? also konkret will ich wissen wie man von diesem bruch auf u'(x0) kommt..

Bezug
                                                        
Bezug
Produktregel Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 Di 28.09.2010
Autor: angela.h.b.


> okay super danke =)
>  
> noch eine frage..
>  
> wie kommt man vom letzten schritt auf die formel?
>  
> kann mir das jemand an dem beispiel
> [mm]\bruch{u(x)-u(x0)}{x-x0}[/mm] zeigen? also konkret will ich
> wissen wie man von diesem bruch auf u'(x0) kommt..

Hallo,

man kommt nicht von dem Bruch auf [mm] u'(x_0), [/mm] sondern vom Grenzwert des Bruches.

[mm] \lim_{x\to x_0}$\bruch{u(x)-u(x_0)}{x-x_0}$ [/mm]  ist der Limes des Differenzenquotienten, und Ihr hattet die Ableitung irgendwann als Limes des Differenzenquotienten definiert.

Erinnerung: [mm] \bruch{u(x)-u(x_0)}{x-x_0} [/mm] ist die Steigung der Sekante, die durch die Punkte P(x|u(x)) und [mm] P_0(x_0|u(x_0)) [/mm] geht.
Rückt man nun mit x immer dichter an [mm] x_0, [/mm] so bekommt man schließlich (Grenzwert) die Steigung der Tangente = Ableitung in [mm] x_0. [/mm]

Gruß v. Angela

P.S.: Ich hoffe, Du hast inzwischen gemerkt, daß abakus Dir durchaus eine ernsthafte Antwort gegeben hatte - auch wenn sie Dir im ersten Moment seltsam vorkam.






Bezug
                                                                
Bezug
Produktregel Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:08 Di 28.09.2010
Autor: Phoenix22

okay vielen dank!=)




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de