www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Formale Sprachen" - Pumping-Lemma
Pumping-Lemma < Formale Sprachen < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pumping-Lemma: Beweis
Status: (Frage) überfällig Status 
Datum: 21:20 Di 15.05.2012
Autor: bandchef

Aufgabe
Beweisen oder widerlegen Sie mit dem Pumping-Lemma, dass die folgende Sprache regulär ist:

[mm] $L_1 [/mm] = [mm] \{ 0^j1^k0^l | j=k+l \text{ für }j,k,l \in \mathbb N \}$ [/mm]

So, dann fang ich nochmal an:

Vermutung: L ist regulär!

Sei [mm] $n_0$ [/mm] die Konstante des PL, dann gilt: [mm] $n_0 \in \mathbb [/mm] N$ mit [mm] $n_0 \geq [/mm] 1$:

$w = [mm] 0^{n_0}1^k0^l$ [/mm]



Für alle $w [mm] \in [/mm] L$ mit $|w| [mm] \geq n_0$ [/mm] mit $u,v,w [mm] \in \Sigma^{\star}_{\text{Bool}}$ [/mm] und $|uv| [mm] \leq [/mm] 1$ und $v [mm] \neq \epsilon$ [/mm] gilt die Zerlegung:

$w = [mm] \underbrace{0^{m_1}}_{\text{=u}} \underbrace{0^{m_2}}_{\text{=v}} \underbrace{1^k 0^l}_{\text{=w}}$ [/mm] mit [mm] $m_1+m_2=j$ [/mm]



Betrachte: $uv^iw [mm] \in [/mm] L$ mit i=2: $uv^2w = [mm] 0^{m_1}(0^{m_2})^21^k0^l [/mm] = [mm] 0^{m_1}0^{2m_2}1^k0^l [/mm] = ...?$



Und ab hier weiß ich dann nicht mehr weiter. Laut der Sprachdefinition von oben hängt die Anzahl der ersten Nulln [mm] $0^j$ [/mm] von der Anzahl der Zeichen [mm] $1^k$ [/mm] und [mm] $0^l$ [/mm] ab. Wenn ich jetzt bspw. k=2 und l=3 wähle, dann berechnet sich ja j=k+l=5. Dann sieht das Wort w ja so aus: 0000011000.

        
Bezug
Pumping-Lemma: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Do 17.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Pumping-Lemma: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:41 Mo 21.05.2012
Autor: sandp

hey,
Mit dem PL kann man nur zeigen, dass eine Sprache nicht regulär ist, die andere Richtung funktioniert nicht.
Um zu zeigen, dass eine Sprache regulär ist kannst du ja zum Beispiel eine Grammatik dafür angeben.
Gruß

Bezug
                
Bezug
Pumping-Lemma: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:27 Do 24.05.2012
Autor: bandchef

Ja, das weiß ich. Genau deswegen hab ich ja in der Vermutung geschrieben, dass ich vermute, dass L regulär ist. Dann kommt beim PL-Beweis raus, dass es eben nicht regulär ist. Und dann hab ich das gegenteil Bewiesen.

Ist das so richtig?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de