www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Formale Sprachen" - Pumping Lemma
Pumping Lemma < Formale Sprachen < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pumping Lemma: für reguläre Sprachen
Status: (Frage) beantwortet Status 
Datum: 16:29 Fr 12.09.2008
Autor: TTaylor

Aufgabe
Sprache L
[mm]L= {a^{2m} b^m}[/mm]; m Element N

Ich nehme an, dass L regulär ist. Es muss also eine Zahl n geben, so dass alle Wörter von L mit |x| >=n sich zerlegen lassen in x=uvw.

mit folgenden Eigenschaften:
1. |v|>=1
2. |uv| <= n
3. für alle i =0,1,2... [mm] uv^iw [/mm] Element L

Was muss ich an dieser Stelle für ein n wählen?
Wähle ich z.B. n=17 dann habe ich z.B. 12 a's und 6 b's.
Da |uv|<=17 sein muss und |v|>=1

Ich verstehe nicht wie darauf komme, dass wegen |uv| <= n und |v|>=1 folgt, dass |uv| nur aus a's bestehen muss?

Hoffe es kann mir jemand weiterhelfen.


        
Bezug
Pumping Lemma: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 Fr 12.09.2008
Autor: Framl

Hi,

Du sollst zeigen, dass die Sprache L nicht regulär ist.

Dafür nimmst du einmal an, es wäre regulär. Dann gilt aber lt. Pummping-Lemma genau die Eigenschaften, die du aufgelistet hast und zwar gilt dies für jedes Wort mit [mm] $|x|\geq [/mm] n$.

Da du ja zeigen sollst, dass die Sprache nicht regulär ist, musst du obiges zum Widerspruch führen.

Du nimmst also eine beliebige natürliche Zahl (damit auch diejenige, die laut P.L. existieren muss - also das n) und wählst dir ein Wort aus der Sprache mit Länge [mm] $\geq [/mm] n$.

Wähle z.B. [mm] $x=a^{2n}b^n$. [/mm] Dieses liegt auf jeden Fall in der Sprache und die Länge ist [mm] $=3n\geq [/mm] n$. Damit gilt mit den von dir notierten Eigenschaften:

Es gibt eine Zerlegung $x=uvw$, sodass für jedes $i=0,1,2,...$ auch $uv^iw$ in der Sprache ist, wobei [mm] $1\leq |v|\leq |uv|\leq [/mm] n$.

Was passiert denn jetzt wenn du $i=0$ wählst? Liegt das Wort dann immer noch in der Sprache? Wenn nein (:-) ) wieso nicht?

Wenn du das gezeigt hast, bist du fertig. Denn dann stimmt die Aussage des Pummping Lemmas also doch nicht (du hast für jedes n gezeigt, dass es ein Wort gibt, sodass es eine Zerlegung gibt, die sich nicht auf- bzw. abpumpen lässt). Damit ist die Sprache nicht regulär.

Gruß Framl

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de