www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Punkt an Ebene spiegeln
Punkt an Ebene spiegeln < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punkt an Ebene spiegeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Fr 01.12.2006
Autor: JR87

Aufgabe
A(1;-10;3)
B(5;-8;4)
C(3;-9;1)

D(3;-14;3)

Der Punkt D wird an der Ebene E (bestehend aus den Punkten A,B,C) gespiegelt.

Nun soll ich die Koordinaten des Bildpunktes D' angeben. Aber wie finde ich diese raus?
Also als erstes würde ich die Ebene in die Hesse'sche Normalform bringen und dann den Abstand berechnen. Aber bringt mir das was?
Wie bekomme ich dann den Punkt raus?

        
Bezug
Punkt an Ebene spiegeln: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Fr 01.12.2006
Autor: M.Rex

Hallo

Mit der Hesseschen Normlenform
ax+by+cz=1 kannst du ja den Normalenvektor [mm] \vec{n}=\vektor{x\\y\\z} [/mm] bestimmen.

Dann kannst du die Gerade
g: [mm] \vec{x}=\vec{d}+\lambda\vec{n} [/mm] bestimmen.

Wenn du diese mit der Ebene gleichsetzt, also in die HNF einsetzt, erhältst du ein [mm] \lambda, [/mm] mit dem du den Schnittpunkt der Gerade mit der Ebene berechnest.

Dein Bildpunkt liegt ja nun genau auf der Anderen Seite der Ebene, und im selben Abstand davon.

Also gilt für deine Bildpunkt D'
[mm] \vec{d'}=\vec{d}+2\lambda*\vec{n} [/mm]

Hilft das weiter?

Marius

Bezug
                
Bezug
Punkt an Ebene spiegeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 Fr 01.12.2006
Autor: JR87

Ja das hilft mir schon viel weiter aber noch ne kurze Frage.

Ich würde dann auf [mm] \vektor{3 \\ -14 \\ 3} [/mm] + [mm] \lambda \vektor{1 \\ -2 \\ 0} [/mm] als Geradengleichung erhalten. Stimmt das?

Am Ende hab ich ja , wenn ich das richtig sehe eine Gerade raus. Wie komm ich dann von da auf einen Punkt?

Bezug
                        
Bezug
Punkt an Ebene spiegeln: Durchstoßpunkt berechnen
Status: (Antwort) fertig Status 
Datum: 18:36 Fr 01.12.2006
Autor: Loddar

Hallo JR87!


Deine Geradengleichung habe ich auch erhalten. Nun musst du den Durchstoßpunkt $S_$ dieser Geraden durch die Ebene ermitteln.

Aus diesem Durchstoßpunkt kannst Du die Entfernung (bzw. das [mm] $\lambda$) [/mm] zwischen $S_$ und $D_$ ermitteln.

Der Spiegelpunkt $D'$ liegt dann inderselbene Entfernung zum Durchstoßpunkt auf der anderen Seite der Geraden.


Gruß
Loddar


Bezug
                                
Bezug
Punkt an Ebene spiegeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 Sa 02.12.2006
Autor: JR87

Also für [mm] \lambda [/mm] bekomme ich -2 heraus. Somit ist mein Durchstoßpunkt S(1/-10/3)

Der Abstand beträgt 4,47 LE

Ist das korrekt?

Wenn das richtig ist, wie gehe ich dann weiter??

Bezug
                                        
Bezug
Punkt an Ebene spiegeln: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 Sa 02.12.2006
Autor: M.Rex

Hallo.

Du hast ja gerade das [mm] \lambda [/mm] berechnet, mit dem du den Durchstosspunkt der Geraden erreichst.
Wenn du dein [mm] \lambda [/mm] für den Durchstosspunkt hast, musst du ja  von D die doppelte Strecke zurücklegen, um den Bildpunkt D' zu berechnen.

Also

[mm] \vec{d'}=\underbrace{\vec{d}+\red{2}\lambda*\vec{n}}_{Durchstossgerade} [/mm]

Die Werte für [mm] \lambda, \vec{n} [/mm] und [mm] \vec{d} [/mm] müsstest du jetzt noch einsetzen.

Marius

Bezug
                                                
Bezug
Punkt an Ebene spiegeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:53 Sa 02.12.2006
Autor: JR87

Ahh ok, stimmt das wurde ja vorher schonmal gepostet. Aber ich habe in meinem letzten Posting meine errechneten Werte für [mm] \lambda [/mm] und den Durchstoßpunkt niedergeschrieben. Könnte mir jemand bestätigen ob da richtig ist

Bezug
                                                        
Bezug
Punkt an Ebene spiegeln: habe auch Deine Werte
Status: (Antwort) fertig Status 
Datum: 14:30 Sa 02.12.2006
Autor: Loddar

Hallo JR87!


[ok] Ich habe auch Deine Werte erhalten. Der Durchstoßpunkt $S_$ ist also mit dem bereits bekannten Punkt $A_$ identisch.


Gruß
Loddar


Bezug
                                                
Bezug
Punkt an Ebene spiegeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 Sa 02.12.2006
Autor: JR87

So wenn ich das jetzt einsetze erhalte ich ja

[mm] \vec{d'} [/mm] = [mm] \vektor{3 \\ -14 \\ 3} [/mm] + [mm] (-4)\vektor{1 \\ -2 \\ 0} [/mm]

Ausmultipliziert ist das dann D' (-1 / -6 / 3 )
Wenn ich das jetzt richtig sehe ist das mein Bildpunkt. Ist das richtig??
Kann ich das auch irgendwie überprüfen?!


Bezug
                                                        
Bezug
Punkt an Ebene spiegeln: Stimmt so!
Status: (Antwort) fertig Status 
Datum: 14:59 Sa 02.12.2006
Autor: Loddar

Hallo JR87!


[ok] Stimmt so!

Überprüfen kannst Du das z.B., indem du den abstand zwischen Bildpunkt $D'_$ und Durchstoßpunkt $S_$ berechnest. Dieser muss ja gleich sein wie Abstand zwischen $D_$ und $S_$ .


Gruß
Loddar


Bezug
                                                                
Bezug
Punkt an Ebene spiegeln: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 15:45 Sa 02.12.2006
Autor: JR87

Ich danke euch allen. Wunderbar

Bezug
                
Bezug
Punkt an Ebene spiegeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:02 Fr 01.12.2006
Autor: riwe

nur der ordnung halber, soweit mir bekannt :
ax + by + cz = d ist die koordinatenform und nicht die HNF,
und der normalenvektor davon - und natürlich auch der der HNF -  wäre
[mm] \vec{n}=\vektor{a\\b\\c} [/mm]
oder?
werner

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de