www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Punkt im 90°-Winkel berechnen
Punkt im 90°-Winkel berechnen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punkt im 90°-Winkel berechnen: 2 Punkte im 90°-Winkel
Status: (Frage) beantwortet Status 
Datum: 10:23 Sa 01.10.2005
Autor: neuling_hier

Hallo, ich habe folgendes Problem:

Gegeben sei eine zweidimensionale "Zeichenebene" (es handelt sich um ein Programm, in dem Fliesskommazahlen nicht  erlaubt sind, aber daran soll's nicht scheitern) mit einem Nullpunkt und den gegebenen Punkten P1 und Q1.

Dabei gibt es auf dem Vektor vom Nullpunkt nach P1 einen Punkt P1', so daß der Vektor P1' -> Q1 im 90°-Winkel zum Vektor Nullpunkt -> P1 steht. Nun "bewegt" sich P1 an eine beliebige andere Stelle der Zeichenebene (= P2). Ich moechte den Punkt Q2 relativ zu P2 setzen, genauso wie Q1 und P1 zueinander stehen (also wieder im 90°-Winkel).

Das Ganze soll ausschließlich auf Vektoren basieren (ohne Winkelfunktionen o.ä.). Wie mache ich das? "Skalarprodukt" kam mir in den Sinn, aber ich bekomme keine brauchbare Lösung hin, um die Position von Q2 in Abhängigkeit von P2 zu berechnen.

Vermutlich sehe ich den Wald vor lauter Bäumen nicht, aber für einen Lichtblick wäre ich super dankbar!!

        
Bezug
Punkt im 90°-Winkel berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Sa 01.10.2005
Autor: ladislauradu

Hallo neuling_hier

> Gegeben sei eine zweidimensionale "Zeichenebene" (es
> handelt sich um ein Programm, in dem Fliesskommazahlen
> nicht  erlaubt sind, aber daran soll's nicht scheitern) mit
> einem Nullpunkt und den gegebenen Punkten P1 und Q1.
>  
> Dabei gibt es auf dem Vektor vom Nullpunkt nach P1 einen
> Punkt P1', so daß der Vektor P1' -> Q1 im 90°-Winkel zum
> Vektor Nullpunkt -> P1 steht. Nun "bewegt" sich P1 an eine
> beliebige andere Stelle der Zeichenebene (= P2). Ich
> moechte den Punkt Q2 relativ zu P2 setzen, genauso wie Q1
> und P1 zueinander stehen (also wieder im 90°-Winkel).
>  
> Das Ganze soll ausschließlich auf Vektoren basieren (ohne
> Winkelfunktionen o.ä.). Wie mache ich das? "Skalarprodukt"
> kam mir in den Sinn, aber ich bekomme keine brauchbare
> Lösung hin, um die Position von Q2 in Abhängigkeit von P2
> zu berechnen.
>  
> Vermutlich sehe ich den Wald vor lauter Bäumen nicht, aber
> für einen Lichtblick wäre ich super dankbar!!

Nehmen wir zwei Punkte P und Q, die in der von dir definierten Beziehung stehen.

Alle Punkte Q müssen folgende Gleichung erfüllen:
[mm]\vec{q}=r\cdot \vec{p}+s\cdot \vec{n}[/mm]                 (1)

wobei r und s beliebige reelle Zahlen sind, und [mm] \vec{n} [/mm] orthogonal zu [mm] \vec{p} [/mm]  ist also [mm] \vec{n}\cdot\vec{p}=0 [/mm]

[mm] \left( \begin{array}{cc} n_{x} & n_{y} \end{array} \right) \cdot \left( \begin{array}{c} p_{x} \\ p_{y} \end{array} \right)=0 [/mm]

[mm]n_{x}p_{x}+n_{y}p_{y}=0[/mm]

Eine Lösung ist

[mm]n_{x}=p_{y}, \qquad n_{y}=-p_{x}[/mm]

Dies in Gleichung (1) eigesetzt ergibt.

[mm] \left( \begin{array}{c} q_{x} \\ q_{y} \end{array} \right)=r \left( \begin{array}{c} p_{x} \\ p_{y} \end{array} \right) +s\left( \begin{array}{c} p_{y} \\ -p_{x} \end{array} \right)= \left( \begin{array}{cc} r & s \\ -s & r \end{array} \right)\cdot \left( \begin{array}{c} p_{x} \\ p_{y} \end{array} \right) [/mm]

Also Punkt Q hängt von zwei Parameter ab r und s. Diese kannst du einschränken, wenn du weitere Bedingungen hinzufügst.

Schöne Grüße, :-)
Ladis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de