www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Punkte in einer Ebene?
Punkte in einer Ebene? < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punkte in einer Ebene?: Vektor
Status: (Frage) beantwortet Status 
Datum: 09:04 So 08.01.2006
Autor: SonyS

Aufgabe
Liegen die Punkte A (2, -1, -2), B (1,2,1), C (2,3,0), D(5,0,-6) in einer Ebene?

Hallo,
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe diese Aufgabe als Hausaufgabe bekommen, aber ich weiss nicht wie ich sie loesen soll. Soweit ich es verstanden habe, soll ich die Koeffizientendeterminante rausfinden und dann schauen ob sie = 0 ist.  Wenn ich die Determinante berechnen will, dann bekomme ich ne 3x4 Matrix, die ich aber nicht berechnen kann, weil ich nicht weiss wie das gehen soll. Ich bin wirklich fuer jeden Tipp dankbar, ich bin jetzt schon verzweifelt.

Danke im Vorraus.

        
Bezug
Punkte in einer Ebene?: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 So 08.01.2006
Autor: piet.t

Hallo,

> Soweit ich es
> verstanden habe, soll ich die Koeffizientendeterminante
> rausfinden und dann schauen ob sie = 0 ist.  Wenn ich die
> Determinante berechnen will, dann bekomme ich ne 3x4
> Matrix, die ich aber nicht berechnen kann, weil ich nicht
> weiss wie das gehen soll.

Das glaube ich gerne, denn die Determinante ist ja nur für quadratische Matrizen definiert....
Die Berechnung einer 3x3-Determinante würde Dir zeigen, ob die 3 Spalten (oder auch Zeilen) linear unabhängige Vektoren sind. Ist die Determinante = 0, dann sind die Vektoren linear abhängig und liegen damit in einer Ebene.
Um zu zeigen, dass die Punkte in einer Ebene liegen darfst Du allerdings nicht die Ortsvektoren betrachten. Vielmehr wählst Du Dir aus den gegebenen 4 Punkten einen "Aufpunkt" aus und betrachtest die Verbindungsvektoren der anderen Punkte mit diesem.

Alles klar?

Gruß

piet

Bezug
                
Bezug
Punkte in einer Ebene?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:40 So 08.01.2006
Autor: SonyS


> Hallo,
>  
> > Soweit ich es
> > verstanden habe, soll ich die Koeffizientendeterminante
> > rausfinden und dann schauen ob sie = 0 ist.  Wenn ich die
> > Determinante berechnen will, dann bekomme ich ne 3x4
> > Matrix, die ich aber nicht berechnen kann, weil ich nicht
> > weiss wie das gehen soll.
>
> Das glaube ich gerne, denn die Determinante ist ja nur für
> quadratische Matrizen definiert....
>  Die Berechnung einer 3x3-Determinante würde Dir zeigen, ob
> die 3 Spalten (oder auch Zeilen) linear unabhängige
> Vektoren sind. Ist die Determinante = 0, dann sind die
> Vektoren linear abhängig und liegen damit in einer Ebene.
>  Um zu zeigen, dass die Punkte in einer Ebene liegen darfst
> Du allerdings nicht die Ortsvektoren betrachten. Vielmehr
> wählst Du Dir aus den gegebenen 4 Punkten einen "Aufpunkt"
> aus und betrachtest die Verbindungsvektoren der anderen
> Punkte mit diesem.
>  
> Alles klar?
>  
> Gruß
>  
> piet

Nicht ganz...:( Erstmal wie soll ich 3x3 Matrize bilden, wenn ich 4 Punkte mit 3 Koordinaten habe?:O Und noch eine Frage?

Vielmehr

> wählst Du Dir aus den gegebenen 4 Punkten einen "Aufpunkt"
> aus und betrachtest die Verbindungsvektoren der anderen
> Punkte mit diesem.

Kannst du mir bitte sagen wie das geht? Oder eventuell mir eine Seite im Internet schicken, wo das erklaert ist. Viellen Dank fuer deine Hilfe.

Bezug
                        
Bezug
Punkte in einer Ebene?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 So 08.01.2006
Autor: piet.t

Hallo,

wählen wir doch als unseren "Aufhängepunkt" einfach mal A (man kann aber genausogut jeden anderen nehmen).
Den Verbindungsvektor [mm] \overrightarrow{AB}[/mm] kriegt man dann ja als:
[mm]\overrightarrow{AB} = \vec{B} - \vec{A} = \vektor{1\\2\\1} - \vektor{2\\-1\\-2} = \vektor{-1\\3\\3} [/mm]
Genauso kann man dann ja auch noch die beiden Vektoren [mm] \overrightarrow{AC} [/mm] und [mm] \overrightarrow{AD} [/mm] bestimmen. Unsere vier Punkte liegen aber doch genau dann in einer Ebene, wenn das auch die drei soeben berechneten Verbindungsvektoren tun (genauer: wenn diese linear abhängig sind). Wir haben jetzt also nur noch 3 Vektoren mit 3 Koordinaten, und da sollte das mit der Determinante dann auch funktionieren, odr?

Gruß

piet

Bezug
                                
Bezug
Punkte in einer Ebene?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 So 08.01.2006
Autor: SonyS

Danke erstmal fuer deine Hilfe. Ich bin jetzt ein Stueck weiter gekommen.

Ich habe jetzt alles berechnet und rausgefunden, dass die Determinante = 12 ist, also linear unabhaengig.

In meinem Antwortenblatt steht aber, dass sie linear abhaengig sind, da die Koeffizientdeterminante = 0 ist. Es ist wirklich komisch.

Bezug
                                        
Bezug
Punkte in einer Ebene?: Antwort
Status: (Antwort) fertig Status 
Datum: 09:49 Mo 09.01.2006
Autor: Julius

Hallo!

Wenn ich $A$ als Aufpunkt nehme, gilt:

[mm] $\det\pmat{-1 & 0 & 3 \\ 3 & 4 & 1 \\ 3 & 2 & -4} [/mm] =16+18-36+2=0$,

wie behauptet.

Liebe Grüße
Julius

Bezug
                                                
Bezug
Punkte in einer Ebene?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:17 Mo 09.01.2006
Autor: SonyS

Viellen Dank. Habe mich natuerlich verrechnet.:( Danke an euch beide.:):):)

Bezug
                                                        
Bezug
Punkte in einer Ebene?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:13 Mo 09.01.2006
Autor: piet.t

...ich mich gestern abend übrigens auch, deswegen wollte ich nochmal drüber schlafen [happy]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de