www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Punktsymmetrie
Punktsymmetrie < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punktsymmetrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 Mo 01.03.2010
Autor: peeetaaa

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
f(x)={ 1 für x>2
          -xcos(\bruch{1}{6}*\pi*x^4) für |x| \le 2
          -1 für x<-2

Zeigen Sie, dass f(-x)=-f(x) gilt \forall x \in \IR

Hallo,

wollte die Aufgabe lösen aber ich weiß nicht so recht wie ich beweise, dass etwas punktsymmetrisch ist!
kann ich das so machen:
f(-x)+f(x)=0
<=> f(-x)=-f(x)
sodass ich  einfach nen VZW mache?

        
Bezug
Punktsymmetrie: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 Mo 01.03.2010
Autor: metalschulze

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Eingabefehler: "{" und "}" müssen immer paarweise
> auftreten, es wurde aber ein Teil ohne Entsprechung
> gefunden (siehe rote Markierung)
>  
> f(x)={ 1 für x>2
>            -xcos(\bruch{1}{6}*\pi*x^4) für |x| \le 2
>            -1 für x<-2
>  
> Zeigen Sie, dass f(-x)=-f(x) gilt \forall x \in \IR
>  Hallo,
>  
> wollte die Aufgabe lösen aber ich weiß nicht so recht wie
> ich beweise, dass etwas punktsymmetrisch ist!
>  kann ich das so machen:
>  f(-x)+f(x)=0
>  <=> f(-x)=-f(x)

>  sodass ich  einfach nen VZW mache?

Du musst zeigen, dass obige Aussage gilt! Bilde also f(-x) und schau, ob am Ende f(x)*(-1) als Ergebnis steht.

Bezug
                
Bezug
Punktsymmetrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 Di 02.03.2010
Autor: peeetaaa

okay sitze immer noch an der Aufgabe

hab jetzt folgendes gemacht:

f(-x)= [mm] x*cos(\bruch{1}{6}\pi*(-x^4)) [/mm]

oder muss das eher heißen:

f(-x)= [mm] x*cos(\bruch{1}{6}\pi*(-x)^4) [/mm]



Bezug
                        
Bezug
Punktsymmetrie: Antwort
Status: (Antwort) fertig Status 
Datum: 16:30 Di 02.03.2010
Autor: fred97


> okay sitze immer noch an der Aufgabe
>  
> hab jetzt folgendes gemacht:
>  
> f(-x)= [mm]x*cos(\bruch{1}{6}\pi*(-x^4))[/mm]

falsch


>  
> oder muss das eher heißen:
>  
> f(-x)= [mm]x*cos(\bruch{1}{6}\pi*(-x)^4)[/mm]

Richtig


FRED

>  
>  


Bezug
                                
Bezug
Punktsymmetrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:38 Di 02.03.2010
Autor: peeetaaa

f(-x)= [mm] x\cdot{}cos(\bruch{1}{6}\pi\cdot{}(-x)^4) [/mm]

dann folgt aus [mm] (-x)^4= x^4 [/mm]

f(-x)= [mm] x\cdot{}cos(\bruch{1}{6}\pi\cdot{}x^4) [/mm]

und folgt daraus dann:

= (-1)* [mm] (x\cdot{}cos(\bruch{1}{6}\pi\cdot{}x^4) [/mm] )

denn durch das -1 ändert sich das [mm] \cdot{}cos(\bruch{1}{6}\pi\cdot{}x^4) [/mm]  ja eigentlich nicht oder?

und dann wäre das ja punktsymmetrisch

Bezug
                                        
Bezug
Punktsymmetrie: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Di 02.03.2010
Autor: fred97


> f(-x)= [mm]x\cdot{}cos(\bruch{1}{6}\pi\cdot{}(-x)^4)[/mm]
>  
> dann folgt aus [mm](-x)^4= x^4[/mm]
>  
> f(-x)= [mm]x\cdot{}cos(\bruch{1}{6}\pi\cdot{}x^4)[/mm]
>  
> und folgt daraus dann:
>  
> = (-1)* [mm](x\cdot{}cos(\bruch{1}{6}\pi\cdot{}x^4)[/mm] )
>  
> denn durch das -1 ändert sich das
> [mm]\cdot{}cos(\bruch{1}{6}\pi\cdot{}x^4)[/mm]  ja eigentlich nicht
> oder?
>  
> und dann wäre das ja punktsymmetrisch

Ja, f ist punktsymmetrisch

Das habe ich Dir auch hier

            https://matheraum.de/read?i=660722

schon mitgeteilt.

FRED

Bezug
        
Bezug
Punktsymmetrie: Formatierung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:40 Di 02.03.2010
Autor: Loddar

Hallo peeetaaa!


Bitte befasse Dich doch auch mal mit dem Formeleditor; insbesondere für fallweise Definitionen. Dir wurde in den letzten Posts Deinerseits das jeweils korrigiert bzw. gezeigt, wie man das formatiert.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de