www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Pyramide
Pyramide < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pyramide: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:18 Mo 30.07.2012
Autor: Mathe-Andi

Aufgabe
Eine Ebene ist durch die Punkte A(1;3;-4), B(2;3;1) und C(8;4;2) gegeben.

a) Stellen Sie die Ebenengleichung in vektorieller und parameterfreier Form auf.

b) Bestimmen Sie einen Vektor, der senkrecht zu dieser Ebene steht.

c) Die Punkte A, B, C und D(2;-2;-2) bilden eine Pyramide. Berechnen Sie den Flächeninhalt der vier Seitenflächen und das Volumen der Pyramide.


Hallo,

ich habe mich mal an dieser Aufgabe versucht und hoffe meine Ergebnisse sind richtig:

a) (habe ich bereits verglichen, ist richtig)

vektorielle Form:   E: [mm] \vec{x}= \vektor{1 \\ 3 \\ -4}+r* \vektor{1 \\ 0 \\ 5}+s* \vektor{7 \\ 1 \\ 6} [/mm]

parameterfreie Form:   E: -5x+29y+z=78

b)

Der Normalenvektor [mm] \overrightarrow{NV} [/mm] einer Ebene die durch zwei Richtungsvektoren [mm] \overrightarrow{RV_{1}} [/mm] und [mm] \overrightarrow{RV_{2}} [/mm] aufgespannt ist, steht senkrecht zu dieser Ebene. Es gilt:

[mm]\overrightarrow{NV}= \overrightarrow{RV_{1}} x \overrightarrow{RV_{2}}= \vektor{-5 \\ 29 \\ 1}[/mm]

c)

Es sind:

[mm] \overrightarrow{AB}= \vektor{1 \\ 0 \\ 5}; \overrightarrow{BC}= \vektor{6 \\ 1 \\ 1}; \overrightarrow{CA}= \vektor{-7 \\ -1 \\ -6}; \overrightarrow{AD}= \vektor{1 \\ -5 \\ 2}; \overrightarrow{BD}= \vektor{0 \\ -5 \\ -3}; \overrightarrow{CD}= \vektor{-6 \\ -6 \\ -4} [/mm]

Die Flächeninhalte der Seitenflächen (3 Seiten und 1 Grundfläche) habe ich so berechnet:

[mm] A_{1}= \bruch{|\overrightarrow{AD} x \overrightarrow{CA}|}{2} \approx [/mm] 24,413


[mm] A_{2}= \bruch{|\overrightarrow{CD} x \overrightarrow{BC}|}{2} \approx [/mm] 17,521


[mm] A_{3}= \bruch{|\overrightarrow{BD} x \overrightarrow{AB}|}{2} \approx [/mm] 12,835

Grundfläche:

cos [mm] \gamma [/mm] = [mm] \bruch{ \overrightarrow{AB}* \overrightarrow{BC}}{| \overrightarrow{AB}| * | \overrightarrow{BC}|} [/mm]

[mm] \gamma \approx [/mm] 69,515°

[mm] A_{G}= \bruch{1}{2} [/mm] * | [mm] \overrightarrow{AB}| [/mm] * | [mm] \overrightarrow{BC}|*sin \gamma [/mm]

= [mm] \bruch{1}{2}* \wurzel{26}* \wurzel{38} [/mm] * sin 69,515° [mm] \approx [/mm] 14,72

A{ges}= [mm] A_{1}+A_{2}+A_{3}+A_{G} \approx [/mm] 69,5



Volumen:

V= [mm] \bruch{1}{3}*A_{G}*h [/mm]

h ist der Abstand des Punktes D(2;-2;-2) von der Ebene E: -5x+29y+z=78.

|d|= [mm] \bruch{-5*(2)+29*(-2)-2-78}{\wurzel{867}} \approx [/mm] 5,0

V= [mm] \bruch{1}{3}*14,72*5,0 \approx [/mm] 24,5


Vielen Dank für Eure Mühe!

        
Bezug
Pyramide: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 Mo 30.07.2012
Autor: Diophant

Hallo,

es ist eigentlich alles richtig. Vermutlich auf Grund von ungenauer Rundung deinerseits erhalte ich zwei leicht abweichende Werte:

[mm] A_2\approx{17.94} [/mm] FE

[mm] V\approx{24.66} [/mm] VE

Schreibe auch unbedingt immer die Einheiten hinter die Ergebnisse, damit klar ist, um welche Art von Größe es sich handelt.


Gruß, Diophant

Bezug
        
Bezug
Pyramide: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 Mo 30.07.2012
Autor: Richie1401

Hallo Mathe-Andi,

das Volumen dieser Pyramide kann man auch bequem mittels dem Spatprodukt berechnen:
[mm] V_{Pyramide}=\frac{1}{6}V_{Spat}=\frac{1}{6}|(\overrightarrow{a}\times\overrightarrow{b})\overrightarrow{c}| [/mm]


EDIT: Betragsklammern gesetzt - Unachtsamkeit meinerseits. Danke an Diophant.

Bezug
                
Bezug
Pyramide: Betrag?
Status: (Korrektur) kleiner Fehler Status 
Datum: 15:51 Mo 30.07.2012
Autor: Diophant

Hallo Richie,

bei den Tipps zur Inhaltsberechnung per Kreuz-/Spatprodukt muss man unbedingt darauf achten, Betragsklammern zu setzen:

[mm] V_{Tetraeder}=\bruch{1}{6}*|\vec{a}\times\vec{b}*\vec{c}| [/mm]

Sonst kann im Falle des Spatproduktes etwas negatives herauskommen, was bei einem Volumen aber nicht sein darf. Beim Kreuzprodukt ist es natürlich eh klar, da geht es um den Betrag eines Vektors.


Gruß, Diophant


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de