www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Pythagoras
Pythagoras < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pythagoras: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:00 Di 25.05.2010
Autor: ynot

Aufgabe
Ein Schwimmer überquert einen Fluß von 150m Breite. Er ist in der Lage, die 100m Strecke über einen längerenzeitraum in jeweils 80s zurückzulegen. Die Strömungsgeschwindigkeit Vf des Flusses beträgt 0,85m/s. Er schwimmt senkrecht zur Strömung.
a) Wie schnell ist der Schwimmer
b) Berechnen Sie die Zeitdauer für die überquerung
c) Wie groß ist die resultierende Geschwindigkeit des Schwimmers?
d) Berechen Sie den Abdrift des Schwimmer
e) Berechen Sie Länge 1 der vom Schwimmer zurückgelegten Strecke
f) Berechen Sie den Winkel des Schwimmers zum Ufer

g)gleiche bedingungen wie oben; der Schwimmer möchte nun den fluss direkt ohne Abdrift überqueren.
g1) berechen sie den Winkel des Schwimmers zum Ufer
g2) Wie gross ist die resultierende Geschwindigkeit des Schwimmers?
g3) Berechenen sie die Zeitdauer für die Überquerung.

moinsen;

hab da mal so´ne einfache frage... mir will diese aufgabe logisch nicht einläuchten... evt kann sich ja einer erbahmen und mir ein licht schenken.
hier mein lösungs ansatz:

a)100m/80s= 1,25m/s [logisch]

[lösungs ansatz für mich zwar unlogisch, aber andere zahlen habe ich ja nicht zur verfügung]
b) 150m / (1.25m/s)= 120s

c)(1.25m/s)+(0.85m/s)[Vf]=2.1m/s

d)(120s)/(2.1m/s)= 57.14m

e) 150²+ 57.14² = [mm] \wurzel{25,765.31} [/mm] = 160.52m

f) [nun müsste man seinen taschenrechner bedienen können, sollte cos [mm] \alpha [/mm] =ankhatete/hypothenuse sein... aber ein winkel von unter 1° ist hier unwarscheinlich :)]

g1) [leider selbigges wie zu f^^ hoffe mir kann da geholfen werden ;P]

g2)
[da er nun, so glaube ich gegen die strömung schwimmt]
(1.25m/s)-(0.85m/s)= 0.4m/s

g3)
[was hier auch schon wieder falsch sein muss da ich nicht die richtige hypothenuse habe]
150m / 0,4m/s =375s

hoffe mir kann da ein gedanken blitz kommen... bitte helfen^^

*Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt*

        
Bezug
Pythagoras: Antwort
Status: (Antwort) fertig Status 
Datum: 14:18 Di 25.05.2010
Autor: statler

Mahlzeit!

> Ein Schwimmer überquert einen Fluß von 150m Breite. Er
> ist in der Lage, die 100m Strecke über einen
> längerenzeitraum in jeweils 80s zurückzulegen. Die
> Strömungsgeschwindigkeit Vf des Flusses beträgt 0,85m/s.
> Er schwimmt senkrecht zur Strömung.
>  a) Wie schnell ist der Schwimmer
>  b) Berechnen Sie die Zeitdauer für die überquerung
>  c) Wie groß ist die resultierende Geschwindigkeit des
> Schwimmers?
>  d) Berechen Sie den Abdrift des Schwimmer
>  e) Berechen Sie Länge 1 der vom Schwimmer zurückgelegten
> Strecke
>  f) Berechen Sie den Winkel des Schwimmers zum Ufer
>  
> g)gleiche bedingungen wie oben; der Schwimmer möchte nun
> den fluss direkt ohne Abdrift überqueren.
>  g1) berechen sie den Winkel des Schwimmers zum Ufer
>  g2) Wie gross ist die resultierende Geschwindigkeit des
> Schwimmers?
>  g3) Berechenen sie die Zeitdauer für die Überquerung.
>  moinsen;
>  
> hab da mal so´ne einfache frage... mir will diese aufgabe
> logisch nicht einläuchten... evt kann sich ja einer
> erbahmen und mir ein licht schenken.
>  hier mein lösungs ansatz:
>  
> a)100m/80s= 1,25m/s [logisch]

Das ist seine Geschwindigkeit im Wasser. Wenn der Fluß meinetwegen von West nach Ost fließt, wäre das seine Süd-Nord-Geschwindigkeit.

> [lösungs ansatz für mich zwar unlogisch, aber andere
> zahlen habe ich ja nicht zur verfügung]
>  b) 150m / (1.25m/s)= 120s

Völlig logisch! Für 100 m braucht er 80 Sek., dann braucht er (3satz) für 150 m 120 Sek.

> c)(1.25m/s)+(0.85m/s)[Vf]=2.1m/s

Nee, das ist eben nicht so. Die eine Geschw. ist Süd-Nord und die andere West-Ost, dann addieren die sich als Vektoren.

> d)(120s)/(2.1m/s)= 57.14m

Seine Abdrift wird von der Strömung bestimmt. In 120 Sek. schleppt ihn der Fluß 120 s * 0,85 m/s mit.

> e) 150²+ 57.14² = [mm]\wurzel{25,765.31}[/mm] = 160.52m

Folgefehler

> f) [nun müsste man seinen taschenrechner bedienen können,
> sollte cos [mm]\alpha[/mm] =ankhatete/hypothenuse sein... aber ein
> winkel von unter 1° ist hier unwarscheinlich :)]

Flußbreite durch Abdrift ist der Tangens des gesuchten Winkels.

> g1) [leider selbigges wie zu f^^ hoffe mir kann da geholfen
> werden ;P]
>  
> g2)
>  [da er nun, so glaube ich gegen die strömung schwimmt]
>  (1.25m/s)-(0.85m/s)= 0.4m/s
>  
> g3)
>  [was hier auch schon wieder falsch sein muss da ich nicht
> die richtige hypothenuse habe]
>  150m / 0,4m/s =375s

Vielleicht versuchst du es mal mit einem Bildchen ...

> hoffe mir kann da ein gedanken blitz kommen... bitte
> helfen^^

... das den Gedankenblitz herbeiführt. Wie ist denn der Zusammenhang zwischen den beiden Aufgabenteilen?

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Pythagoras: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:19 Di 25.05.2010
Autor: ynot

Aufgabe
c) Wie groß ist die resultierende Geschwindigkeit des Schwimmers?

c)(1.25m/s)+(0.85m/s)[Vf]=2.1m/s

Nee, das ist eben nicht so. Die eine Geschw. ist Süd-Nord und die andere West-Ost, dann addieren die sich als Vektoren.  

wie addiere ich sie als "vektoren" ???
sorry... nie gelernt ;)

Bezug
                        
Bezug
Pythagoras: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 Di 25.05.2010
Autor: statler


> c) Wie groß ist die resultierende Geschwindigkeit des
> Schwimmers?
>  
> c)(1.25m/s)+(0.85m/s)[Vf]=2.1m/s
>  
> Nee, das ist eben nicht so. Die eine Geschw. ist Süd-Nord
> und die andere West-Ost, dann addieren die sich als
> Vektoren.
> wie addiere ich sie als "vektoren" ???

Mal dir für die eine Geschwindigkeit einen 12,5 cm langen Pfeil von Süd nach Nord. An seine Spitze (oben) hängst du einen 8,5 cm langen Pfeil nach Ost. Die Vektorsumme geht dann vom Anfang des 1. Pfeils (unten) zum Ende des 2. (oben rechts). In dem Dreieck ist das die Hypotenuse. Ihre Länge ist die Summe der Geschwindigkeiten.

Gruß
Dieter

PS: In der Physik sind viele Größen Vektoren, z. B. eben die Geschwindigeit und auch die Kraft (hat auch Betrag und Richtung). Die Masse dagegen nicht, die hat nur einen Betrag.


>  sorry... nie gelernt ;)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de