www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Pythagorean Triplet
Pythagorean Triplet < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pythagorean Triplet: Flächenberechnung
Status: (Frage) beantwortet Status 
Datum: 13:10 Fr 23.10.2009
Autor: Christian2180

Aufgabe
If the area of rectangle ABCD is 4*(square root of 3), then what is the area of the square DEFG?

Wir haben also das Rechteck ABCD, welches auf der Breite AD liegt. Zusaetzlich haben wir das Quadrat DEFG. Beide Okjekte schneiden sich im Punkt D, haben den Punkt D gemeinsam. Bildlich gesprochen liegt das Rechteck oben links und das Quadrat unten rechts an der Ecke D des Rechtecks. Zusaetzlich ist eine Linie eingezeichnet zwischen Punkt C des Rechtecks und Punkt E des Quadrats, woraus sich dann ein Hilfsdreieck CDE ergibt. Zusaetzlich ist die Diagonale im Rechteck ABCD zwischen Punkt A und Punkt C eingezeichnet, woraus sich das Dreieck ACD ergibt. Im Dreick ACD betragen die Winkel 30 Grad/90Grad/60Grad und im 3-Eck CDE betragen die Winkel 45/45/90Grad. Die Flaeche des Rechtecks ABCD betraegt 4x(Wurzel aus 3). Wie gross ist die Flaeche des Quadrats DEFG? Vorgegebene Loesung die ich nicht verstehe: "The key to this problem is to remember that the sides of a 30/60/90 degree triangle are related as 1:Wurzel 3 : 2 and the sides of a 45/45/90degree triangle are related as 1:1:2. Triangle ACD is a 30/60/90degree triangle so its sides are related as 1:(Wurzel3):2. Hence, [mm] 1/2*AD*CD=(Wurzel3)/2*(AD^2)=1/2*4*(Wurzel3), (Wurzel3)*(AD^2) [/mm] = 4*(Wurzel3). So, AD=2, and CD=DE=2*(Wurzel3). So, the area of DEFG is 12." Ich verstehe nicht, was das Quadrat der Seite AD hier zu suchen hat. Wozu wird die Seite AD quadriert?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Pythagorean Triplet: Skizze
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:16 Fr 23.10.2009
Autor: M.Rex

Hallo

Stelle mal ne Skizze ein

Anleitung:
Wenn du im Quelltext
[img]1[/img]
eingibst, wirst du beim Abschicken zum Senden des Bildes aufgefordert.

Marius

Bezug
        
Bezug
Pythagorean Triplet: Antwort
Status: (Antwort) fertig Status 
Datum: 10:05 Mi 28.10.2009
Autor: felixf

Hallo!

> If the area of rectangle ABCD is 4*(square root of 3), then
> what is the area of the square DEFG?
>
>  Wir haben also das Rechteck ABCD, welches auf der Breite
> AD liegt. Zusaetzlich haben wir das Quadrat DEFG. Beide
> Okjekte schneiden sich im Punkt D, haben den Punkt D
> gemeinsam. Bildlich gesprochen liegt das Rechteck oben
> links und das Quadrat unten rechts an der Ecke D des
> Rechtecks. Zusaetzlich ist eine Linie eingezeichnet
> zwischen Punkt C des Rechtecks und Punkt E des Quadrats,
> woraus sich dann ein Hilfsdreieck CDE ergibt. Zusaetzlich
> ist die Diagonale im Rechteck ABCD zwischen Punkt A und
> Punkt C eingezeichnet, woraus sich das Dreieck ACD ergibt.

Du musst ja die Seitenlaenge $C D$ bestimmen, da diese gleich den Seitenlaengen $D E$ und $D G$ ist und deren Quadrat somit der gesuchte Flaecheninhalt ist.

> Im Dreick ACD betragen die Winkel 30 Grad/90Grad/60Grad und
> im 3-Eck CDE betragen die Winkel 45/45/90Grad. Die Flaeche
> des Rechtecks ABCD betraegt 4x(Wurzel aus 3). Wie gross ist
> die Flaeche des Quadrats DEFG?
>
> Vorgegebene Loesung die ich
> nicht verstehe: "The key to this problem is to remember
> that the sides of a 30/60/90 degree triangle are related as
> 1:Wurzel 3 : 2 and the sides of a 45/45/90degree triangle
> are related as 1:1:2.

Du meinst $1 : 1 : [mm] \sqrt{2}$? [/mm]

> Triangle ACD is a 30/60/90degree
> triangle so its sides are related as 1:(Wurzel3):2. Hence,
> [mm]1/2*AD*CD=(Wurzel3)/2*(AD^2)=1/2*4*(Wurzel3)[/mm],

Der Flaecheninhalt von ACD ist ja die Haelfe des Flaecheninhaltes von ABCD. Also ist $1/2 * AD * CD = [mm] 4\sqrt{3} [/mm] / 2$. Gleichzeitig ist $CD = [mm] \sqrt{3} [/mm] AD$, womit $1/2 * AD * CD = [mm] \sqrt{3}/2 (AD)^2$ [/mm] ist.

Damit erhaelst du:

> [mm](Wurzel3)*(AD^2) = 4*(Wurzel3)[/mm].

Und daraus dann:

> So, AD=2, and CD=DE=2*(Wurzel3).

... da $AD * CD = 4 [mm] \sqrt{3}$ [/mm] der Flaecheninhalt ovn $A B C D$ ist.

> So, the area of DEFG is 12." Ich verstehe nicht, was das Quadrat
> der Seite AD hier zu suchen hat. Wozu wird die Seite AD
> quadriert?

Verstehst du es jetzt?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de