www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Numerik linearer Gleichungssysteme" - QR-Zerlegung
QR-Zerlegung < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

QR-Zerlegung: Link oder Erklärung generell
Status: (Frage) beantwortet Status 
Datum: 18:21 Mi 03.11.2004
Autor: Karl_Pech

Hallo Zusammen,


Weiß jemand wo ich eine einfache Erklärung zur QR-Zerlegung finde?


Vielen Dank!


Viele Grüße
Karl



        
Bezug
QR-Zerlegung: "Animation"
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:15 So 22.01.2006
Autor: Bastiane

Hallo Karl, hallo mathemaduenn!

Ich habe gerade mal Infos zur QR-Zerlegung gesucht und bin dabei auf eure Diskussion gestoßen. Nachdem ich schon ein paar Beispiele gerechnet hatte (weil unsere Tutorin uns endlich mal gezeigt hatte, wie es geht :-)), habe ich mathemaduenns Erklärung ganz gut verstanden. []Hier habe ich dann noch eine kleine "Animation" dazu gefunden - evtl. hilft das jemandem, der später mal auf diese Diskussion hier stößt. :-)

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
QR-Zerlegung: Grundlagen
Status: (Antwort) fertig Status 
Datum: 21:26 Mi 03.11.2004
Autor: mathemaduenn

Hallo Karl,
Bei der LR Zerlegung ist L eine untere Dreiecksmatrix und R eine obere Dreiecksmatrix. Dreieckssysteme kann man wie Du Deinem link entnehmen konntest leicht lösen. Bei der QR Zerlegung ist R wieder eine obere Dreiecksmatrix. Q aber nicht. Dies scheint zunächst albern wieso formt man umständlich um wenn man's nicht einfach lösen kann?
Die Antwort Natürlich kann man. [mm] Q^{-1}=Q^T [/mm] (Die Inerse von Q ist gleich ihrer Transponierten)
Soll man Ax=b lösen berechnet man also
1. Die QR Zerlegung von A
2. [mm]c=Q^Tb[/mm]
3. x aus Rx=c (Dreiecksgestalt)
Jetzt könntest Du berechtigterweise die Frage stellen wie man 1. ausrechnet. Da gibt's verschiedene Möglichkeiten Householder-Spiegelung, Givens-Drehung oder klassisch Gram Schmidt.
Als Einstieg sollte das erstmal genügen.
Alles klar oder soll's genauer sein?
gruß
mathemaduenn


Bezug
                
Bezug
QR-Zerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Mi 03.11.2004
Autor: Karl_Pech

Hallo mathemaduenn,


>  Jetzt könntest Du berechtigterweise die Frage stellen wie
> man 1. ausrechnet. Da gibt's verschiedene Möglichkeiten
> Householder-Spiegelung, Givens-Drehung oder klassisch Gram
> Schmidt.
>  Als Einstieg sollte das erstmal genügen.
> Alles klar oder soll's genauer sein?


Danke für deine Antwort! Könntest du vielleicht auf diese Hoseholder-Spiegelung noch etwas näher eingehen? Danke nochmal.



Viele Grüße
Karl



Bezug
                        
Bezug
QR-Zerlegung: Householder Spiegelung
Status: (Antwort) fertig Status 
Datum: 23:03 Mi 03.11.2004
Autor: mathemaduenn

Hallo Karl,
Grundsätzlich versucht man wie bei der LR Zerlegung auch Nullen zu erzeugen. in jedem Schritt wird dabei mit folgender Transformationsmatrix multipliziert:
[mm]H = I - nn^T[/mm] mit [mm]||n||_2=1[/mm]
n ist ein vektor I die Einheitsmatrix.
Die ist orthogonal( [mm] H^T [/mm] *H = I).
Diese Matrix soll jetzt in der ersten Spalte(a) Nullen unterhalb der ersten Zeile erzeugen.
[mm] Ha=(I-2nn^T)a=a-2nn^Ta=a-2(n^Ta)n= \vektor{{\rho}_1 \\ 0\\...\\0} [/mm]
[mm] \rho_1= \pm||a||_2 [/mm] (Die Matrix H ändert die Norm des Vektors nicht.
Jetzt nimmt man [mm] v=\vektor{a_1 - {\rho}_1 \\ a_2\\...\\a_n} [/mm]
und setzt [mm] n=\bruch{v}{||v||_2} [/mm]
Dasselbe macht man dann für die nächsten Spalten nur das die oberen Zeilen dabei unverändert bleiben sollen also für Spalte 2
[mm] v=\vektor{0 \\ \overline{a}_{22} - {\rho}_2 \\ \overline{a}_{32}\\...\\ \overline{a}_{n2}} [/mm]
[mm] n=\bruch{v}{||v||_2} [/mm]
Dabei soll der Strich drüber bedeuten das die Elemente der Matrix A(a's ) durch die erste Transformation verändert worden sind.
Das Vorzeichen von [mm] \rho [/mm] muss dabei lediglich so sein das v [mm] \not= [/mm] 0

gruß
mathemaduenn


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de