www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Numerik linearer Gleichungssysteme" - QR-Zerlegung
QR-Zerlegung < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

QR-Zerlegung: Problem, Beispiel
Status: (Frage) beantwortet Status 
Datum: 13:25 Fr 26.11.2004
Autor: Bastiane

Hallo!
Diese Aufgabe hätten wir zwar schon abgeben sollen, aber da wir das nicht auf die Reihe bekommen haben und auf dem nächsten Blatt wieder ganz viel mit QR-Zerlegung vorkommt, will ich das jetzt doch mal wissen...

Wir sollten eine QR-Zerlegung mit Householder-Reflektionen von der Matrix A machen.
[mm] A=\pmat{ 0 & -2 & -1 \\ 0 & 0 & -1 \\ 4 & 5 & 2 } [/mm]

Laut Skript muss ich da zuerst [mm] v^1 [/mm] := [mm] a^1 [/mm] + sign [mm] (a_{11})||a^1||_2 e^1 [/mm] berechnen, wobei [mm] a^1 [/mm] die erste Spalte von a, a_11 der "erste" Eintrag und [mm] e^1 [/mm] der Vektor  [mm] \vektor{1 \\ 0 \\ 0}. [/mm] Das wäre doch dann:
[mm] v^1 [/mm] = [mm] \vektor{0 \\ 0 \\ 4} [/mm]
Nun muss ich [mm] Q_1 [/mm] := [mm] Q_{v^1} [/mm] berechnen.
Also:
[mm] Q_1 [/mm] = I - [mm] \bruch{2vv^T}{v^T v}, [/mm] wobei [mm] v=v_1 [/mm]
Da erhalte ich [mm] Q_1 [/mm] = [mm] \pmat{\bruch{1}{16} & 0 & 0 \\ 0 & \bruch{1}{16} & 0 \\ 0 & 0 & 0} [/mm]
und somit [mm] Q_1 [/mm] * A = [mm] \pmat{ 0 & -\bruch{2}{16} & -\bruch{1}{16} \\ 0 & 0 & -\bruch{1}{16} \\ 0 & 0 & 0} [/mm]
Komisch, heute kommt es hin, gestern hatte ich längst nicht so viele Nullen da stehen. Trotzdem hätte ich gerne eine Bestätigung, dass dies richtig ist oder einen Hinweis auf einen Fehler.

Wenn ich jetzt weiter mache, muss ich doch für die Matrix [mm] \pmat{0 & -\bruch{1}{16} \\ 0 & 0} [/mm] dasselbe machen. Das kommt mir allerdings komisch vor, da hier der erste Vektor ja der Nullvektor ist - irgendwo ist da wohl ein Fehler.

Wer findet meinen Fehler?

Viele Grüße
Bastiane
[banane]

        
Bezug
QR-Zerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:06 Sa 27.11.2004
Autor: mathemaduenn

Hallo Bastiane,
> Laut Skript muss ich da zuerst [mm]v^1[/mm] := [mm]a^1[/mm] + sign
> [mm](a_{11})||a^1||_2 e^1[/mm] berechnen, wobei [mm]a^1[/mm] die erste Spalte
> von a, a_11 der "erste" Eintrag und [mm]e^1[/mm] der Vektor  
> [mm]\vektor{1 \\ 0 \\ 0}.[/mm] Das wäre doch dann:
>  [mm]v^1[/mm] = [mm]\vektor{0 \\ 0 \\ 4} [/mm]

Hier findest du eine Beschreibung der Householder QR Zerlegung die eine Sonderbehandlung der 0 enthält. Dies deckt sich mit meiner Erinnerung.

>  Nun muss ich [mm]Q_1[/mm] := [mm]Q_{v^1}[/mm]
> berechnen.
>  Also:
>  [mm]Q_1[/mm] = I - [mm]\bruch{2vv^T}{v^T v},[/mm] wobei [mm]v=v_1 [/mm]
>  Da erhalte ich [mm]Q_1[/mm] = [mm]\pmat{\bruch{1}{16} & 0 & 0 \\ 0 & \bruch{1}{16} & 0 \\ 0 & 0 & 0} [/mm]

Ein nicht invertierbares Q ist auf jeden Fall verdächtig. Dies kann nicht stimmen.

> und somit [mm]Q_1[/mm] * A = [mm]\pmat{ 0 & -\bruch{2}{16} & -\bruch{1}{16} \\ 0 & 0 & -\bruch{1}{16} \\ 0 & 0 & 0} [/mm]
>  
> Komisch, heute kommt es hin, gestern hatte ich längst nicht
> so viele Nullen da stehen. Trotzdem hätte ich gerne eine
> Bestätigung, dass dies richtig ist oder einen Hinweis auf
> einen Fehler.

Nach Multiplikation mit Q sollte in der ersten Spalte das erste Element ungleich null sein und die anderen Gleich null.
gruß
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de