www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 5-7" - Quadr. Ergänzung
Quadr. Ergänzung < Klassen 5-7 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadr. Ergänzung: quadratische ergänzung: hilfe!
Status: (Frage) beantwortet Status 
Datum: 19:22 Do 16.12.2004
Autor: VivaLaJess

Hallo!

Könnte mir bitte jemand diese folgende aufgabe erklären?
habe mal den anfang versucht

1)ergänze zu einem quadrat!

a)z²+az=z²+az+a²=(z+a)²
b)v²-12vw=v2-2*6*v*w+ w²= wie wird denn die binom. formel hier?


Danke schon mal,Jessica

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Quadr. Ergänzung: Antwort
Status: (Antwort) fehlerhaft Status 
Datum: 19:51 Do 16.12.2004
Autor: cremchen

Halli hallo!

> 1)ergänze zu einem quadrat!
>  
> a)z²+az=z²+az+a²=(z+a)²

Also gegeben ist [mm] z^{2}+az [/mm] oder?
am besten du schreibst dir zuerst mal die binomischen Formeln auf, dann siehst du am besten was fehlt!
[mm] (a+b)^{2}=a^{2}+2ab+b^{2} [/mm]
[mm] (a-b)^{2}=a^{2}-2ab+b^{2} [/mm]
[mm] (a+b)(a-b)=a^{2}-b^{2} [/mm]

Also machen wir bei a) folgendes:
[mm] z^{2}+az=z^{2}+az+az-az+a^{2}-a^{2}=(a+z)^{2}-az-a^{2} [/mm]
Aber ehrlich gesagt fänd ich so eine Ergänzung hier ziemlich sinnlos

>  b)v²-12vw=v2-2*6*v*w+ w²= wie wird denn die binom. formel
> hier?

Gegeben [mm] v^{2}-12vw [/mm]
Hier kannst du wie folgt ergänzen
[mm] v^{2}-12vw=v^{2}-12vw+36w^{2}-36w^2=(v-6w)^2-36w^2 [/mm]


Ich hoffe ich konnte dir weiterhelfen!

Liebe Grüße
Ulrike


Bezug
        
Bezug
Quadr. Ergänzung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Fr 17.12.2004
Autor: Sinfulis

Auftrag: z²+kz

ZieL:Ergänze zu einem quadrat!

Strategie:

a²+2ab+b²

Ansatz:  2ab= kz
                a  = k halbe

                a² = k² viertel


Also: z²+kz + (k/2)² = (z+ k/2)²




Bezug
        
Bezug
Quadr. Ergänzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:01 Sa 18.12.2004
Autor: FriedrichLaher

Hallo, Jessica

(bitte, keine =Zeichen wo sie nicht gemeint sein können
)
a) es sei e die Ergänzung
und
es soll z² + az + e = (z + x)² werden
also
z² + az + e = z² + 2*z*x +

az + e = 2*z*x +

z*(a - 2x) = - e

und das muß für beliebige z und a stimmen und für fixe x und e
das
ist nur möglich wenn beide Seiten der Gleichung 0 sind
also
$a = 2*x [mm] \Rightarrow [/mm] x = [mm] \frac{a}{2}$ [/mm]
aus
[mm] $\green{x^2} [/mm] - [mm] \red{e} [/mm] = 0$ wird mit $x = [mm] \frac{a}{2}$ [/mm]

[mm] $\green{ \left( \frac{a}{2} \right)^2} [/mm] - [mm] \red{e} [/mm] = 0 [mm] \Rightarrow [/mm] e = [mm] (\frac{a}{2})^2$ [/mm]
zu
einem Quadrat ergänzt ist z² + a*z also [mm] $z^2 [/mm] + a*z + [mm] \left(\frac{a}{2}\right)^2 [/mm] = [mm] \left(z + \frac{a}{2} \right)^2$ [/mm]
für
b) ist dann "z = v" und "a = 12w"

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de