www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Quadratische Gleichungen
Quadratische Gleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:49 So 23.05.2004
Autor: michael7

Hallo zusammen,

ich habe hier ein paar quadratische Gleichungen, die ich soweit auch geloest bekomme. Allerdings habe ich die Vermutung, dass man auf die Loesungen einfacher/geschickter kommen kann. Z.B.:

[mm] (43+10x)^2+(66+10x)^2=(79+14x)^2 [/mm]

Ich habe einfach die Binome ausmultipliziert, die Gleichung nach 0 aufgeloest und mittels p-q-Formel geloest. Allerdings sind da ja schon recht grosse Werte dabei und die Quadrate dann eben auch entsprechend gross. Gibt es da eine "Abkuerzung" zum schnelleren Loesen?

Nach dem selben Schema bin ich bei den folgenden zwei Aufgaben vorgegangen.

[mm] x+\bruch{1}{x}=\bruch{a-b}{a+b}+\bruch{a+b}{a-b} [/mm]

[mm] \bruch{a+x}{b+x}+\bruch{b+x}{a+x}=\bruch{5}{2} [/mm]

Gerade bei ersterer kommen die beiden Loesungen [mm] x_{1}=\bruch{a+b}{a-b} [/mm] und [mm] x_{2}=\bruch{a-b}{a+b} [/mm] ja eigentlich schon direkt auf der rechten Seite der Gleichung vor. Uebersehe ich da irgendeinen "Trick"?

Bin gespannt auf Eure Antworten!

Michael

        
Bezug
Quadratische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:34 So 23.05.2004
Autor: Stefan

Lieber Michael!

> [mm] (43+10x)^2+(66+10x)^2=(79+14x)^2 [/mm]
>  
> Ich habe einfach die Binome ausmultipliziert, die Gleichung
> nach 0 aufgeloest und mittels p-q-Formel geloest.
> Allerdings sind da ja schon recht grosse Werte dabei und
> die Quadrate dann eben auch entsprechend gross. Gibt es da
> eine "Abkuerzung" zum schnelleren Loesen?

Hier sehe ich keinen praktikablen Weg, jedenfalls keinen, der einen entscheidenden Vorteil bringt.
  

> [mm] x+\bruch{1}{x}=\bruch{a-b}{a+b}+\bruch{a+b}{a-b} [/mm]

Hier kann man ja, wie du schon meintest, die beiden Lösungen ablesen. Da sowohl links als auch rechts die Summe von Bruch und Kehrbruch steht, sind [mm] $\bruch{a-b}{a+b}$ [/mm] und sein Kehrbruch [mm] $\bruch{a+b}{a-b}$ [/mm] die beiden Lösungen (beachte: Der Kehrbuch des Kehrbruches ist wieder der Bruch, daher ist alles "symmetrisch").

Gut, also [mm] $\bruch{a-b}{a+b}$ [/mm] und [mm] $\bruch{a+b}{a-b}$ [/mm] sind auf jeden Fall (im Falle $a [mm] \ne [/mm] b$ und $a [mm] \ne [/mm] -b$) zwei Lösungen. Doch sind es auch alle Lösungen?

Ja, denn es handelt sich ja (wenn man mit $x$ durchmultipliziert) um eine quadratische Gleichung, und eine solche kann höchstens zwei Lösungen haben. Zwei haben wir aber bereits gefunden, also kann es keine weiteren geben.
  

> [mm] \bruch{a+x}{b+x}+\bruch{b+x}{a+x}=\bruch{5}{2} [/mm]

Wegen

[mm] $\bruch{5}{2} [/mm] = [mm] \frac{1}{2} [/mm] + [mm] \frac{2}{1}$ [/mm]

kannst du wieder argumentieren, dass entweder

[mm] $\bruch{a+x}{b+x} [/mm] = [mm] \frac{1}{2}$ [/mm] und [mm] $\bruch{b+x}{a+x} [/mm] = [mm] \frac{2}{1}$ [/mm]

oder

[mm] $\bruch{a+x}{b+x} [/mm] = [mm] \frac{2}{1}$ [/mm] und [mm] $\bruch{b+x}{a+x} [/mm] = [mm] \frac{1}{2}$ [/mm]

gelten muss.

Löse beiden Gleichungssysteme auf, und du bekommst zwei Lösungen.

Da es sich wieder um eine quadratische Gleichung handelt, sind dies auch die einzigen Lösungen.

Achtung: Eventuell musst du eine Fallunterschiedung machen, da ja zwei Parameter ($a$ und $b$) mit im Spiel sind, das habe ich jetzt nicht überprüft.

Melde dich doch mal mit einem Ergebnis der letzten Aufgabe, aber bitte mit allen Zwischenschritten. :-)

Liebe Grüße
Stefan


Bezug
                
Bezug
Quadratische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:19 So 23.05.2004
Autor: michael7

Hallo Stefan,

erstmal vielen Dank fuer Deine ausfuehrlichen Erlaeuterungen!

> > [mm] x+\bruch{1}{x}=\bruch{a-b}{a+b}+\bruch{a+b}{a-b} [/mm]
>  
> Hier kann man ja, wie du schon meintest, die beiden
> Lösungen ablesen. Da sowohl links als auch rechts die Summe
> von Bruch und Kehrbruch steht, sind [mm] $\bruch{a-b}{a+b}$ [/mm] und
> sein Kehrbruch [mm] $\bruch{a+b}{a-b}$ [/mm] die beiden Lösungen
> (beachte: Der Kehrbuch des Kehrbruches ist wieder der
> Bruch, daher ist alles "symmetrisch").

Ok, wenn ich mir die Gleichung anschaue, erscheint mir das jetzt auch logisch. Kann man das auch eher formal durch Umformung zeigen? Falls ja, wie?

> > [mm] \bruch{a+x}{b+x}+\bruch{b+x}{a+x}=\bruch{5}{2} [/mm]
>  
> Wegen
>
> [mm] $\bruch{5}{2} [/mm] = [mm] \frac{1}{2} [/mm] + [mm] \frac{2}{1}$ [/mm]

Hast Du das jetzt "einfach gesehen" oder gibt es eine Technik sowas rauszubekommen? Denn bei komplexeren Zahlen duerfte doch das nicht mehr so leicht gelingen, oder?
  

> kannst du wieder argumentieren, dass entweder
>  
> [mm] $\bruch{a+x}{b+x} [/mm] = [mm] \frac{1}{2}$ [/mm] und [mm] $\bruch{b+x}{a+x} [/mm] =
> [mm] \frac{2}{1}$ [/mm]
>  
> oder
>  
> [mm] $\bruch{a+x}{b+x} [/mm] = [mm] \frac{2}{1}$ [/mm] und [mm] $\bruch{b+x}{a+x} [/mm] =
> [mm] \frac{1}{2}$ [/mm]
>  
> gelten muss.
>  
> Löse beiden Gleichungssysteme auf, und du bekommst zwei
> Lösungen.
>  
> Da es sich wieder um eine quadratische Gleichung handelt,
> sind dies auch die einzigen Lösungen.
>  
> Achtung: Eventuell musst du eine Fallunterschiedung machen,
> da ja zwei Parameter ($a$ und $b$) mit im Spiel sind, das
> habe ich jetzt nicht überprüft.

Wie meinst Du das genau?

> Melde dich doch mal mit einem Ergebnis der letzten Aufgabe,
> aber bitte mit allen Zwischenschritten. :-)

Also einmal habe ich es ja schon mittels p-q-Formel geloest. Ist jetzt etwas viel zum Abtippen. ;-)

Wenn man die von Dir angegebenen Gleichungssysteme mit beiden Nennern multipliziert, erkennt man, dass es sich um die selben Gleichungen handelt. (Oder man nimmt die Kehrbrueche bzw. potenziert beide Seiten mit -1). Also reicht es eine Gleichung des jeweiligen Systems zu loesen und das ergibt einmal

[mm] $\frac{a+x}{b+x}=\frac{1}{2} \gdw [/mm] 2(a+x) = b+x [mm] \gdw [/mm] x = b-2a$

und

[mm] $\frac{a+x}{b+x}=\frac{2}{1} \gdw [/mm] a+x = 2b+2x [mm] \gdw [/mm] x = a-2b$

Richtig? Ist die Verwendung von [mm] $\gdw$ [/mm] hier korrekt?

Michael

Bezug
                        
Bezug
Quadratische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 So 23.05.2004
Autor: Marc

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo michael7,

> > > x+\bruch{1}{x}=\bruch{a-b}{a+b}+\bruch{a+b}{a-b}
>  >  
> > Hier kann man ja, wie du schon meintest, die beiden
> > Lösungen ablesen. Da sowohl links als auch rechts die
> Summe
> > von Bruch und Kehrbruch steht, sind $\bruch{a-b}{a+b}$
> und
> > sein Kehrbruch $\bruch{a+b}{a-b}$ die beiden Lösungen
> > (beachte: Der Kehrbuch des Kehrbruches ist wieder der
> > Bruch, daher ist alles "symmetrisch").
>  
> Ok, wenn ich mir die Gleichung anschaue, erscheint mir das

> jetzt auch logisch. Kann man das auch eher formal durch
> Umformung zeigen? Falls ja, wie?

Das wird dich enttäuschen: Wir hatten ja erkannt, dass auf beiden Seiten der Gleichung ein Ausdruck zu seinem Kehrwert addiert wird, also so etwas hier:

$x+\bruch{1}{x}=y+\bruch{1}{y}$   |$*x$
$\gdw\ x^2+1=xy+x*\bruch{1}{y}$
$\gdw\ x^2+1=x\left(y+\bruch{1}{y}\right)$
$\gdw\ x^2-\left(y+\bruch{1}{y}\right)x+1=0$

p/q-Formel:

$\gdw\ x_{1,2}=\left(y+\bruch{1}{y}\right)*\bruch{1}{2}\pm\wurzel{\left(\left(y+\bruch{1}{y}\right)*\bruch{1}{2}\right)^2-1}$
$\gdw\ x_{1,2}=\left(y+\bruch{1}{y}\right)*\bruch{1}{2}\pm\wurzel{\left(y+\bruch{1}{y}\right)^2*\bruch{1}{4}-1}$
$\gdw\ x_{1,2}=\left(y+\bruch{1}{y}\right)*\bruch{1}{2}\pm\wurzel{\bruch{(y^2+1)^2}{4y^2}-1}$
$\gdw\ x_{1,2}=\left(y+\bruch{1}{y}\right)*\bruch{1}{2}\pm\wurzel{\bruch{y^4+2y^4+1}{4y^2}-\bruch{4y^2}{4y^2}$
$\gdw\ x_{1,2}=\left(y+\bruch{1}{y}\right)*\bruch{1}{2}\pm\wurzel{\bruch{y^4-2y^4+1}{4y^2}}$
$\gdw\ x_{1,2}=\left(y+\bruch{1}{y}\right)*\bruch{1}{2}\pm\wurzel{\bruch{(y^2-1)^2}{4y^2}}$
$\gdw\ x_{1,2}=\left(y+\bruch{1}{y}\right)*\bruch{1}{2}\pm\bruch{|y^2-1|}{|2y|}}$
$\gdw\ x_{1,2}=\bruch{y^2+1}{2y}\pm\bruch{|y^2-1|}{|2y|}}$

1. Fall: y>1
$\gdw\ x_{1,2}=\bruch{y^2+1}{2y}\pm\bruch{y^2-1}{2y}}$
$\gdw\ x_{1}=\bruch{y^2+1}{2y}+\bruch{y^2-1}{2y}}$ oder $x_{2}=\bruch{y^2+1}{2y}-\bruch{y^2-1}{2y}}$
$\gdw\ x_{1}=\bruch{2y^2}{2y}$ oder $x_{2}=\bruch{2}{2y}$
$\gdw\ x_{1}=y$ oder $x_{2}=\bruch{1}{y}$

2. Fall: 0<y<1
$\gdw\ x_{1,2}=\bruch{y^2+1}{2y}\pm\bruch{-(y^2-1)}{2y}}$
$\gdw\ x_{1,2}=\bruch{y^2+1}{2y}\mp\bruch{y^2-1}{2y}}$
siehe 1. Fall

3. Fall: -1<y<0
$\gdw\ x_{1,2}=\bruch{y^2+1}{2y}\pm\bruch{-(y^2-1)}{-2y}}$
$\gdw\ x_{1,2}=\bruch{y^2+1}{2y}\pp\bruch{y^2-1}{2y}}$
siehe 1. Fall

4. Fall: y<-1
$\gdw\ x_{1,2}=\bruch{y^2+1}{2y}\pm\bruch{y^2-1}{-2y}}$
$\gdw\ x_{1,2}=\bruch{y^2+1}{2y}\mp\bruch{y^2-1}{2y}}$
siehe 1. Fall

Es ergibt sich also in allen vier Fällen: $x_1=y$ oder $x_2=\bruch{1}{y}$, womit eine Trivialität formal korrekt gezeigt wäre.
  

> > > \bruch{a+x}{b+x}+\bruch{b+x}{a+x}=\bruch{5}{2}
>  >  
> > Wegen
> >
> > $\bruch{5}{2} = \frac{1}{2} + \frac{2}{1}$
>  
> Hast Du das jetzt "einfach gesehen" oder gibt es eine
> Technik sowas rauszubekommen? Denn bei komplexeren Zahlen
> duerfte doch das nicht mehr so leicht gelingen, oder?

Man muß nur sehen, dass die Gleichung von dieser Form ist:

$z+\bruch{1}{z}=\bruch{5}{2}$
$\gdw\ z^2+1=\bruch{5}{2}z$
$\gdw\ z^2-\bruch{5}{2}z+1=0$
Das kann man dann nach z auflösen und erhält die von Stefan angegebenen Bruchzahlen.

>    
> > kannst du wieder argumentieren, dass entweder
>  >  
> > $\bruch{a+x}{b+x} = \frac{1}{2}$ und $\bruch{b+x}{a+x} =
>
> > \frac{2}{1}$
>  >  
> > oder
>  >  
> > $\bruch{a+x}{b+x} = \frac{2}{1}$ und $\bruch{b+x}{a+x} =
>
> > \frac{1}{2}$
>  >  
> > gelten muss.
>  >  
> > Löse beiden Gleichungssysteme auf, und du bekommst zwei
>
> > Lösungen.
>  >  
> > Da es sich wieder um eine quadratische Gleichung handelt,
>
> > sind dies auch die einzigen Lösungen.
>  >  
> > Achtung: Eventuell musst du eine Fallunterschiedung
> machen,
> > da ja zwei Parameter ($a$ und $b$) mit im Spiel sind, das
>
> > habe ich jetzt nicht überprüft.
>  
> Wie meinst Du das genau?

Stefan meinte, dass man --wie ich es oben ja vorgemacht habe-- eventuell einzelne Fälle untersuchen muss, z.B. wenn man aus einen quadratischen Ausdruck die Wurzel ziehen will:
$\wurzel{a^2}=a$, falls a>0
$\wurzel{a^2}=-a$, falls a<0
  

> > Melde dich doch mal mit einem Ergebnis der letzten
> Aufgabe,
> > aber bitte mit allen Zwischenschritten. :-)
>  
> Also einmal habe ich es ja schon mittels p-q-Formel
> geloest. Ist jetzt etwas viel zum Abtippen. ;-)
>  
> Wenn man die von Dir angegebenen Gleichungssysteme mit
> beiden Nennern multipliziert, erkennt man, dass es sich um
> die selben Gleichungen handelt. (Oder man nimmt die
> Kehrbrueche bzw. potenziert beide Seiten mit -1). Also
> reicht es eine Gleichung des jeweiligen Systems zu loesen
> und das ergibt einmal
>  
> $\frac{a+x}{b+x}=\frac{1}{2} \gdw 2(a+x) = b+x \gdw x =
> b-2a$
>  
> und
>  
> $\frac{a+x}{b+x}=\frac{2}{1} \gdw a+x = 2b+2x \gdw x =
> a-2b$
>  
> Richtig? Ist die Verwendung von $\gdw$ hier korrekt?

Das untersuche ich (oder jemand anders) gleich, muß erst was essen jetzt :-)

Bis gleich,
Marc

Bezug
                                
Bezug
Quadratische Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:48 So 23.05.2004
Autor: michael7

Hallo Marc,

> [ausfuehrliche Beschreibung]

danke fuer die genaue Erklaerung. Werde ich mir nachher bzw. morgen nochmal genauer anschauen. Fuehle mich ja schon richtig schlecht, dass ich Dir soviel Tipp-Arbeit gemacht habe. :-)

> > Hast Du das jetzt "einfach gesehen" oder gibt es eine
> > Technik sowas rauszubekommen? Denn bei komplexeren Zahlen
>
> > duerfte doch das nicht mehr so leicht gelingen, oder?
>  
> Man muß nur sehen, dass die Gleichung von dieser Form
> ist:
>  
> [mm] $z+\bruch{1}{z}=\bruch{5}{2}$ [/mm]
>  [mm] $\gdw\ z^2+1=\bruch{5}{2}z$ [/mm]
>  [mm] $\gdw\ z^2-\bruch{5}{2}z+1=0$ [/mm]
>  Das kann man dann nach z auflösen und erhält die von
> Stefan angegebenen Bruchzahlen.

Ok.
  

> Stefan meinte, dass man --wie ich es oben ja vorgemacht
> habe-- eventuell einzelne Fälle untersuchen muss, z.B. wenn
> man aus einen quadratischen Ausdruck die Wurzel ziehen
> will:
>  [mm] $\wurzel{a^2}=a$, [/mm] falls a>0
>  [mm] $\wurzel{a^2}=-a$, [/mm] falls a<0

Alles klar. Habe ich jetzt verstanden.
    

> Das untersuche ich (oder jemand anders) gleich, muß erst
> was essen jetzt :-)

Hast Du Dir verdient. :-)

Danke nochmal,

Michael

Bezug
                        
Bezug
Quadratische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 So 23.05.2004
Autor: Oliver

Hallo Michael!

Dann wollen wir mal Marc sein verdientes Essen gönnen und ich übernehme den Rest ;) :

> Wenn man die von Dir angegebenen Gleichungssysteme mit
> beiden Nennern multipliziert, erkennt man, dass es sich um
> die selben Gleichungen handelt. (Oder man nimmt die
> Kehrbrueche bzw. potenziert beide Seiten mit -1). Also
> reicht es eine Gleichung des jeweiligen Systems zu loesen
> und das ergibt einmal
>  
> [mm] $\frac{a+x}{b+x}=\frac{1}{2} \gdw [/mm] 2(a+x) = b+x [mm] \gdw [/mm] x = b-2a$
>  
> und
>  
> [mm] $\frac{a+x}{b+x}=\frac{2}{1} \gdw [/mm] a+x = 2b+2x [mm] \gdw [/mm] x = a-2b$
>  
> Richtig? Ist die Verwendung von [mm] $\gdw$ [/mm] hier korrekt?

Richtig, aufpassen musst Du nur bei den Nullstellen des Nenners. Hier ist das ja der Fall, wenn $x=-b$ gilt, also (in beiden Fällen) wenn  $a=b$. Dann bekommst Du Probleme mit dem Bruch, der wird nämlich zu [mm] $\frac{a+x}{b+x}=\frac{a-b}{b-b}=\frac{a-a}{b-b}=\frac{0}{0}$. [/mm]

Der Folgepfeil gilt also nur in die Hinrichtung (nach rechts) uneingeschränkt ... wenn Du eine genau-dann-wenn-Beziehung herstellen willst, musst Du $a<>b$ voraussetzen.

Mach's gut
Oliver

Bezug
                                
Bezug
Quadratische Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:51 So 23.05.2004
Autor: michael7

Hallo Oliver,

> Dann wollen wir mal Marc sein verdientes Essen gönnen und
> ich übernehme den Rest ;) :

:-)

> > Richtig? Ist die Verwendung von [mm] $\gdw$ [/mm] hier korrekt?
>  
> Richtig, aufpassen musst Du nur bei den Nullstellen des
> Nenners. Hier ist das ja der Fall, wenn $x=-b$ gilt, also
> (in beiden Fällen) wenn  $a=b$. Dann bekommst Du Probleme
> mit dem Bruch, der wird nämlich zu
> [mm] $\frac{a+x}{b+x}=\frac{a-b}{b-b}=\frac{a-a}{b-b}=\frac{0}{0}$. [/mm]
>  
> Der Folgepfeil gilt also nur in die Hinrichtung (nach
> rechts) uneingeschränkt ... wenn Du eine
> genau-dann-wenn-Beziehung herstellen willst, musst Du
> $a<>b$ voraussetzen.

Verstehe. Vielen Dank fuer Deine Hilfe!

Michael

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de